Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
A numerical algorithm for feedback linearization of single input nonlinearsystems using the CIR method and tenser product splines
Autore:
Jang, YJ; Kim, SW;
Indirizzi:
Pohang Univ Sci & Technol, POSTECH, Grad Sch Elect, Pohang 790784, South Korea Pohang Univ Sci & Technol Pohang South Korea 790784 790784, South Korea Pohang Univ Sci & Technol, POSTECH, Comp Engn Div, Pohang 790784, South Korea Pohang Univ Sci & Technol Pohang South Korea 790784 790784, South Korea POSTECH, Fac Elect, Pohang 790784, South Korea POSTECH Pohang South Korea 790784 Fac Elect, Pohang 790784, South Korea POSTECH, Comp Engn Div, Pohang 790784, South Korea POSTECH Pohang South Korea 790784 p Engn Div, Pohang 790784, South Korea
Titolo Testata:
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES
fascicolo: 7, volume: E84A, anno: 2001,
pagine: 1793 - 1798
SICI:
0916-8508(200107)E84A:7<1793:ANAFFL>2.0.ZU;2-9
Fonte:
ISI
Lingua:
ENG
Keywords:
feedback linearization; approximate integrating factor; characteristic curve; CIR method; tenser product splines;
Tipo documento:
Letter
Natura:
Periodico
Settore Disciplinare:
Engineering, Computing & Technology
--discip_EC--
Citazioni:
9
Recensione:
Indirizzi per estratti:
Indirizzo: Jang, YJ Pohang Univ Sci & Technol, POSTECH, Grad Sch Elect, Pohang 790784, South Korea Pohang Univ Sci & Technol Pohang South Korea 790784 South Korea
Citazione:
Y.J. Jang e S.W. Kim, "A numerical algorithm for feedback linearization of single input nonlinearsystems using the CIR method and tenser product splines", IEICE T FUN, E84A(7), 2001, pp. 1793-1798

Abstract

It is very difficult to obtain a linearizing feed-back and a coordinate transformation map, even though the system is feedback linearizable. It is known that finding a desired transformation map and feedback is equivalent tofinding an integrating factor for an annihilating one-form. In this paper we develop a numerical algorithm for an integrating factor involving a set of partial differential equations and corresponding zero-form using the C.I. R method. We employ a tensor product splines as an interpolation method todata which are resulted from the numerical algorithm in order to obtain anapproximate integrating factor and a zero-form in closed forms. Next, we obtain a coordinate transformation map using the approximate integrating factor and zero-form. Finally, we construct a stabilizing controller based on a linearized system with the approximate coordinate transformation.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 28/09/20 alle ore 14:45:36