Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Implementing the one-sided Jacobi method on a 2D/3D mesh multicomputer
Autore:
Royo, D; Valero-Garcia, M; Gonzalez, A;
Indirizzi:
Univ Politecn Catalunya, Dept Arquitectura Computadors, E-08034 Barcelona,Spain Univ Politecn Catalunya Barcelona Spain E-08034 E-08034 Barcelona,Spain
Titolo Testata:
PARALLEL COMPUTING
fascicolo: 9, volume: 27, anno: 2001,
pagine: 1253 - 1271
SICI:
0167-8191(200108)27:9<1253:ITOJMO>2.0.ZU;2-G
Fonte:
ISI
Lingua:
ENG
Soggetto:
ALGORITHMS; SETS;
Keywords:
eigenvalues and eigenvectors; one-dimensional and two-dimensional algorithms; one-sided Jacobi method; Jacobi orderings;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Engineering, Computing & Technology
Citazioni:
13
Recensione:
Indirizzi per estratti:
Indirizzo: Royo, D Univ Politecn Catalunya, Dept Arquitectura Computadors, C Jordi 1-3,CampusNord,Edifici D6, E-08034 Barcelona, Spain Univ Politecn Catalunya CJordi 1-3,Campus Nord,Edifici D6 Barcelona Spain E-08034
Citazione:
D. Royo et al., "Implementing the one-sided Jacobi method on a 2D/3D mesh multicomputer", PARALLEL C, 27(9), 2001, pp. 1253-1271

Abstract

The paper discusses the implementation of a parallel algorithm to compute the eigenvalues and eigenvectors of a real symmetric matrix on a mesh multicomputer. The algorithm uses the one-sided Jacobi method and a two-dimensional organization of the nodes. It is aimed at reducing the communication cost incurred by one-dimensional algorithms found in the literature. The performance of the proposed algorithm on a squared 2D/3D mesh multicomputer is assessed through simple analytical models of execution time. The models show that the performance improvement over one-dimensional algorithms can be very noticeable, specially for a large number of nodes. (C) 2001 Elsevier Science B.V. All rights reserved.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 11/07/20 alle ore 07:40:48