Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Asymptotic profiles for convection-diffusion equations with variable diffusion
Autore:
Duro, G; Carpio, A;
Indirizzi:
Univ Autonoma Madrid, Dept Anal Econ Econ Cuantitat, E-28049 Madrid, SpainUniv Autonoma Madrid Madrid Spain E-28049 antitat, E-28049 Madrid, Spain Univ Complutense, Dept Matemat Aplicada, E-28040 Madrid, Spain Univ Complutense Madrid Spain E-28040 at Aplicada, E-28040 Madrid, Spain
Titolo Testata:
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
fascicolo: 4, volume: 45, anno: 2001,
pagine: 407 - 433
SICI:
0362-546X(200108)45:4<407:APFCEW>2.0.ZU;2-0
Fonte:
ISI
Lingua:
ENG
Soggetto:
LARGE-TIME BEHAVIOR;
Keywords:
convection-diffusion; long-time behavior; variable diffusion;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Physical, Chemical & Earth Sciences
Citazioni:
12
Recensione:
Indirizzi per estratti:
Indirizzo: Duro, G Univ Autonoma Madrid, Dept Anal Econ Econ Cuantitat, E-28049 Madrid, Spain Univ Autonoma Madrid Madrid Spain E-28049 E-28049 Madrid, Spain
Citazione:
G. Duro e A. Carpio, "Asymptotic profiles for convection-diffusion equations with variable diffusion", NONLIN ANAL, 45(4), 2001, pp. 407-433

Abstract

We investigate the large time behavior of solutions of the convection-diffusion equationu(t) - div(a(x)delu) = d . del (\u\(q-1)u) d epsilon R-N, in (0, infinity)x R-Nwith integrable initial data u(0)(x). We take a(x) = 1 + b(x) > 0 with b smooth and decaying to zero fast enough as x --> infinity. When q > 1 + 1/N,it is known that the solutions behave, in a first approximation, like the solutions of the head equation taking the same initial data as t --> infinity. We show here the influence of the nonlinear term and the variable diffusion in the large time behavior by obtaining the second term in the asymptotic development of solutions as t --> infinity. (C) 2001 Elsevier Science Ltd. All rights reserved.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 04/12/20 alle ore 21:54:10