Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
An optimization approach to signal extraction from noisy multivariate data
Autore:
Yokoo, T; Knight, BW; Sirovich, L;
Indirizzi:
CUNY Mt Sinai Sch Med, Lab Appl Math, New York, NY 10029 USA CUNY Mt SinaiSch Med New York NY USA 10029 Math, New York, NY 10029 USA Rockefeller Univ, Biophys Lab, New York, NY 10021 USA Rockefeller Univ New York NY USA 10021 iophys Lab, New York, NY 10021 USA
Titolo Testata:
NEUROIMAGE
fascicolo: 6, volume: 14, anno: 2001,
pagine: 1309 - 1326
SICI:
1053-8119(200112)14:6<1309:AOATSE>2.0.ZU;2-T
Fonte:
ISI
Lingua:
ENG
Soggetto:
CAT VISUAL-CORTEX; MONKEY STRIATE CORTEX; FUNCTIONAL-ORGANIZATION; NEURONAL-ACTIVITY; SPATIAL-FREQUENCY; ONGOING ACTIVITY; ORIENTATION; MAPS; STIMULATION; SEPARATION;
Keywords:
image analysis; functional imaging; optical imaging; multivariate analysis; signal analysis;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Life Sciences
Citazioni:
33
Recensione:
Indirizzi per estratti:
Indirizzo: Yokoo, T CUNY Mt Sinai Sch Med, Lab Appl Math, A20-76,1 Gustav L Levy Pl, New York,NY 10029 USA CUNY Mt Sinai Sch Med A20-76,1 Gustav L Levy Pl New York NY USA 10029
Citazione:
T. Yokoo et al., "An optimization approach to signal extraction from noisy multivariate data", NEUROIMAGE, 14(6), 2001, pp. 1309-1326

Abstract

We consider a problem of blind signal extraction from noisy multivariate data, in which each datum represents a system's response, observed under a particular experimental condition. Our prototype example is multipixel functional images of brain activity in response to a set of prescribed experimental stimuli. We present a novel multivariate analysis technique, which identifies the different activity patterns (signals) that are attributable to specific experimental conditions, without a priori knowledge about the signal or the noise characteristics. The extracted signals, which we term the generalized indicator functions, are optimal in the sense that they maximize a weighted difference between the signal variance and the noise variance. With an appropriate choice of the weighting parameter, the method returns a set of images whose signal-to-noise ratios satisfy some user-defined level of significance. We demonstrate the performance of our method in optical intrinsic signal imaging of cat cortical area 17. We find that the method performs effectively and robustly in all tested data, which include both real experimental data and numerically simulated data. The method of generalizedindicator functions is related to canonical variate analysis, a multivariate analysis technique that directly solves for the maxima of the signal-to-noise ratio, but important theoretical and practical differences exist, which can make our method more appropriate in certain situations. (C) 2001 Academic Press.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 28/01/20 alle ore 21:31:49