Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Selective adhesion of astrocytes to surfaces modified with immobilized peptides
Autore:
Kam, L; Shain, W; Turner, JN; Bizios, R;
Indirizzi:
Rensselaer Polytech Inst, Dept Biomed Engn, Troy, NY 12180 USA Rensselaer Polytech Inst Troy NY USA 12180 iomed Engn, Troy, NY 12180 USA New York State Dept Hlth, Wadsworth Ctr Labs & Res, Lab Nervous Syst Disorders, Albany, NY 12201 USA New York State Dept Hlth Albany NY USA 12201 orders, Albany, NY 12201 USA
Titolo Testata:
BIOMATERIALS
fascicolo: 2, volume: 23, anno: 2002,
pagine: 511 - 515
SICI:
0142-9612(200201)23:2<511:SAOATS>2.0.ZU;2-H
Fonte:
ISI
Lingua:
ENG
Soggetto:
CENTRAL-NERVOUS-SYSTEM; CELL-ADHESION; PRIMARY CULTURES; MINERALIZATION; PROLIFERATION; REGIONS; NEURONS; BRAIN;
Keywords:
astrocytes; neural cell adhesion molecule; peptide-modified biomaterials; cell adhesion; fibroblasts;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Life Sciences
Citazioni:
15
Recensione:
Indirizzi per estratti:
Indirizzo: Bizios, R Rensselaer Polytech Inst, Dept Biomed Engn, 110 8th St, Troy, NY12180 USA Rensselaer Polytech Inst 110 8th St Troy NY USA 12180 12180 USA
Citazione:
L. Kam et al., "Selective adhesion of astrocytes to surfaces modified with immobilized peptides", BIOMATERIAL, 23(2), 2002, pp. 511-515

Abstract

Under serum-free conditions, rat skin fibroblasts, but not cortical astrocytes, selectively adhered to glass surfaces modified with the integrin-ligand peptide RGDS. In contrast, astrocytes, but not fibroblasts, exhibited enhanced adhesion onto substrates modified with KHIFSDDSSE, a peptide that mimics a homophilic binding domain of neural cell adhesion molecule (NCAM). Astrocyte and fibroblast adhesion onto substrates modified with the integrinligands IKVAV and YIGSR as well as the control peptides RDGS and SEDSDKFISH were similar to that observed on aminophase glass (reference substrate). This study is the first to demonstrate the use of immobilized KHIFSDDSSE inselectively modulating astrocyte and fibroblast adhesion on material surfaces, potentially leading to materials that promote specific functions of cells involved in the response(s) of central nervous system tissues to injury. This information could be incorporated into novel biomaterials designed to improve the long-term performance of the next generation of neural prostheses. (C) 2001 Elsevier Science Ltd. All rights reserved.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 25/01/20 alle ore 16:32:00