Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
The effects of hydrogen on the deformation and fracture of beta-titanium
Autore:
Teter, DF; Robertson, IM; Birnbaum, HK;
Indirizzi:
Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA Univ Illinois Urbana IL USA 61801 nois, Mat Res Lab, Urbana, IL 61801 USA
Titolo Testata:
ACTA MATERIALIA
fascicolo: 20, volume: 49, anno: 2001,
pagine: 4313 - 4323
SICI:
1359-6454(200112)49:20<4313:TEOHOT>2.0.ZU;2-0
Fonte:
ISI
Lingua:
ENG
Soggetto:
MECHANICAL-PROPERTIES; ASSISTED CRACKING; PHASE-CHANGES; EMBRITTLEMENT; ALLOYS; NICKEL; SYSTEM; HVEM; TEM;
Keywords:
transmission electron microscopy (TEM) hydrogen embrittlement; mechanical properties; titanium alloys;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Physical, Chemical & Earth Sciences
Engineering, Computing & Technology
Citazioni:
49
Recensione:
Indirizzi per estratti:
Indirizzo: Robertson, IM Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA Univ Illinois Urbana IL USA 61801 Lab, Urbana, IL 61801 USA
Citazione:
D.F. Teter et al., "The effects of hydrogen on the deformation and fracture of beta-titanium", ACT MATER, 49(20), 2001, pp. 4313-4323

Abstract

The hydrogen-induced ductile-brittle transition in the BCC beta -titanium alloy. Timetal-(R) 21S, occurs abruptly at a critical hydrogen concentration that decreased with decreasing tensile test temperature. Mechanical property tests showed that solute hydrogen reduced the yield strength of ductilespecimens and decreased the fracture stress of brittle specimens. To identify the operative mechanism a series of experiments were performed to test the applicability of the stress-induced hydride mechanism, the hydrogen-enhanced plasticity mechanism, and the decohesion mechanism of hydrogen embrittlement. The experiments showed that no hydrides were associated with the fracture process. indicating that the stress-induced hydride mechanism was not responsible for the observed sharp ductile-brittle transition. In situ straining experiments in a controlled environment transmission electron microscope showed that hydrogen enhanced the mobility of dislocations in both uncharged and hydrogen charged alloys, showing that the hydrogen-enhanced localized plasticity mechanism cannot account for the observed behavior. The experimental results are. however, fully consistent with the decohesion mechanism of hydrogen embrittlement. (C) 2001 Published by Elsevier Science Ltd on behalf of Acta Materialia Inc.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 01/10/20 alle ore 15:53:02