Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
An electrochemical impedance study of the electrochemical doping process of platinum phthalocyanine microcrystals in non-aqueous electrolytes
Autore:
Jiang, JH; Kucernak, A;
Indirizzi:
Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England Univ London Imperial Coll Sci Technol & Med London England SW7 2AZ gland
Titolo Testata:
JOURNAL OF ELECTROANALYTICAL CHEMISTRY
fascicolo: 1-2, volume: 514, anno: 2001,
pagine: 1 - 15
Fonte:
ISI
Lingua:
ENG
Soggetto:
POLYMER FILM ELECTRODES; CONDUCTING POLYMERS; CHARGE-TRANSPORT; MOLECULAR-METAL; THIN-FILMS; STATE; AC; OXIDATION; BEHAVIOR; OXYGEN;
Keywords:
electrochemical doping; electrochemical impedance spectroscopy. platinum phthalocyanine; microcrystal;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Physical, Chemical & Earth Sciences
Citazioni:
66
Recensione:
Indirizzi per estratti:
Indirizzo: Kucernak, A Univ London Imperial Coll Sci Technol & Med, Dept Chem, S Kinsington, London SW7 2AZ, England Univ London Imperial Coll Sci Technol & MedS Kinsington London England SW7 2AZ
Citazione:
J.H. Jiang e A. Kucernak, "An electrochemical impedance study of the electrochemical doping process of platinum phthalocyanine microcrystals in non-aqueous electrolytes", J ELEC CHEM, 514(1-2), 2001, pp. 1-15

Abstract

The electrochemical doping process of platinum phthalocyanine (PtPc) microcrystalline films in acetonitrile electrolyte has been investigated using electrochemical impedance spectroscopy (EIS). The system shows the impedancebehaviour expected for a conductive polymer-that is, the appearance of a separate Randles circuit, a Warburg section and purely capacitive behaviour at low frequencies, An equivalent circuit is developed which provides a good fit to experimental impedance data over a wide frequency range of 1 MHz-0.05 Hz. The kinetic parameters of the electrochemical doping process dependstrongly upon the doping potential. Analysis of the conductivity of the PtPc film suggests that a percolation effect is responsible for the first-scan discrepancy. At low doping levels, the rate of the first electrochemical step is slow and determined by the conductivity of the microcrystalline film, Once the film becomes conductive, the electrochemical reaction is accelerated abruptly giving rise to a sharp peak. Further increases in doping potential trigger another slow oxidation process. The potential dependence of the diffusion-migration capacitance suggests strong interactions between charge carriers within the microcrystalline film. (C) 2001 Published by Elsevier Science B.V.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 13/07/20 alle ore 20:05:35