Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Development of thermal error model with minimum number of variables using fuzzy logic strategy
Autore:
Lee, JH; Lee, JH; Yang, SH;
Indirizzi:
Kyungpook Natl Univ, Dept Mech Engn, Taegu 702701, South Korea Kyungpook Natl Univ Taegu South Korea 702701 , Taegu 702701, South Korea
Titolo Testata:
KSME INTERNATIONAL JOURNAL
fascicolo: 11, volume: 15, anno: 2001,
pagine: 1482 - 1489
SICI:
1226-4865(200111)15:11<1482:DOTEMW>2.0.ZU;2-Z
Fonte:
ISI
Lingua:
ENG
Soggetto:
COMPENSATION;
Keywords:
thermal error model; temperature variable; model performance; fuzzy logic; CNC machine tool;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Engineering, Computing & Technology
Citazioni:
18
Recensione:
Indirizzi per estratti:
Indirizzo: Yang, SH Kyungpook Natl Univ, Dept Mech Engn, Taegu 702701, South Korea Kyungpook Natl Univ Taegu South Korea 702701 02701, South Korea
Citazione:
J.H. Lee et al., "Development of thermal error model with minimum number of variables using fuzzy logic strategy", KSME INT J, 15(11), 2001, pp. 1482-1489

Abstract

Thermally-induced errors originating from machine tool errors have received significant attention recently because high speed and precise machining is now the principal trend in manufacturing processes using CNC machine tools. Since the thermal error model is generally a function of temperature, the thermal error compensation system contains temperature sensors with the same number of temperature variables. The minimization of the number of variables in the thermal error model can affect the economical efficiency and the possibility of unexpected sensor fault in a error compensation system. This paper presents a thermal error model with minimum number of variables using a fuzzy logic strategy. The proposed method using a fuzzy logic strategy does not require any information about the characteristics of the plant contrary to numerical analysis techniques, but the developed thermal error model guarantees good prediction performance. The proposed modeling method can also be applied to any type of CNC machine tool if a combination of thepossible input variables is determined because the error model parameters are only calculated mathematically based on the number of temperature variables.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 28/09/20 alle ore 15:27:59