Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Maximizing entropy by minimizing area: Towards a new principle of self-organization
Autore:
Ziherl, P; Kamien, RD;
Indirizzi:
Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA Univ Penn Philadelphia PA USA 19104 & Astron, Philadelphia, PA 19104 USA
Titolo Testata:
JOURNAL OF PHYSICAL CHEMISTRY B
fascicolo: 42, volume: 105, anno: 2001,
pagine: 10147 - 10158
SICI:
1520-6106(20011025)105:42<10147:MEBMAT>2.0.ZU;2-6
Fonte:
ISI
Lingua:
ENG
Soggetto:
CHARGE-STABILIZED COLLOIDS; PHASE-DIAGRAM; MINIMAL-SURFACES; CRYSTAL-STRUCTURES; SYSTEMS; TRANSITIONS; DISORDER; MICELLES; STATE; MODEL;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Physical, Chemical & Earth Sciences
Citazioni:
62
Recensione:
Indirizzi per estratti:
Indirizzo: Kamien, RD Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA Univ Penn Philadelphia PA USA 19104 Philadelphia, PA 19104 USA
Citazione:
P. Ziherl e R.D. Kamien, "Maximizing entropy by minimizing area: Towards a new principle of self-organization", J PHYS CH B, 105(42), 2001, pp. 10147-10158

Abstract

We propose a heuristic explanation for the numerous non-close-packed crystal structures observed in various colloidal systems. By developing an analogy between soap froths and the soft coronas of fuzzy colloids, we provide ageometrical interpretation of the free energy of soft spheres. Within thispicture, we show that the close-packing rule associated with hard-core interactions and positional entropy of particles is frustrated by a minimum-area principle associated with the soft tail and internal entropy of the softcoronas. We also discuss these ideas in terms of crystal architecture and pair distribution functions and analyze the phase diagram of a model hard-sphere-square-shoulder system within the cellular theory. We find that the A15 lattice, known to be area minimizing, is favored for a reasonable range of model parameters and so it is among the possible equilibrium states for a. variety of colloidal systems. We also show that in the case of short-range convex potentials the A15 and other non-close-packed lattices coexist over a broad ranges of densities, which could make their identification difficult.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 09/04/20 alle ore 19:46:29