Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
The validity of genetic models underlying quantitative traits
Autore:
Goddard, ME;
Indirizzi:
Univ Melbourne, Inst Land & Food Resources, Melbourne, Vic, Australia UnivMelbourne Melbourne Vic Australia ources, Melbourne, Vic, Australia Victorian Inst Anim Sci, Melbourne, Vic, Australia Victorian Inst Anim Sci Melbourne Vic Australia elbourne, Vic, Australia
Titolo Testata:
LIVESTOCK PRODUCTION SCIENCE
fascicolo: 1-2, volume: 72, anno: 2001,
pagine: 117 - 127
SICI:
0301-6226(200111)72:1-2<117:TVOGMU>2.0.ZU;2-5
Fonte:
ISI
Lingua:
ENG
Soggetto:
MARKER-ASSISTED SELECTION; FINITE LOCUS MODEL; VARIANCE-COMPONENTS; COMPLEX SEGREGATION; DOMINANCE; INHERITANCE; POPULATION; HOLSTEINS; PIGS; SIRE;
Keywords:
genetic model;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Agriculture,Biology & Environmental Sciences
Citazioni:
42
Recensione:
Indirizzi per estratti:
Indirizzo: Goddard, ME Univ Melbourne, Inst Land & Food Resources, Melbourne, Vic, Australia Univ Melbourne Melbourne Vic Australia ourne, Vic, Australia
Citazione:
M.E. Goddard, "The validity of genetic models underlying quantitative traits", LIVEST PROD, 72(1-2), 2001, pp. 117-127

Abstract

This paper reviews the validity of the assumptions and predictions of genetic models used for the analysis of quantitative traits. When data on phenotypes and pedigrees but not individual genes are available, the traditional, additive, infinitesimal model makes satisfactory predictions of short-term response to selection despite the incorrectness of its assumptions. Improvements can made in the model such as the inclusion of non-additive variance components or major genes but gains in the accuracy of prediction have seldom been demonstrated. When data are available on individual genes or markers, two models are in common use - a two allele and an infinite allele model. The two models differ in a number of respects such as assumptions aboutsegregation variance, estimation of fixed or random effects and number of parameters to be estimated when multiple traits are used. There is little information on the accuracy with which either model predicts the performanceof future animals. (C) 2001 Elsevier Science B.V. All rights reserved.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 27/10/20 alle ore 10:12:25