Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Simple quadratic derivations in two variables
Autore:
Maciejewski, A; Moulin-Ollagnier, J; Nowicki, A;
Indirizzi:
Nicholas Copernicus Univ, Ctr Astron, PL-87100 Torun, Poland Nicholas Copernicus Univ Torun Poland PL-87100 n, PL-87100 Torun, Poland Ecole Polytech, UMS CNRS 658 Medicis, Lab GAGE, F-91128 Palaiseau, France Ecole Polytech Palaiseau France F-91128 GAGE, F-91128 Palaiseau, France Nicholas Copernicus Univ, Fac Math & Informat, PL-87100 Torun, Poland Nicholas Copernicus Univ Torun Poland PL-87100 t, PL-87100 Torun, Poland
Titolo Testata:
COMMUNICATIONS IN ALGEBRA
fascicolo: 11, volume: 29, anno: 2001,
pagine: 5095 - 5113
SICI:
0092-7872(2001)29:11<5095:SQDITV>2.0.ZU;2-0
Fonte:
ISI
Lingua:
ENG
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Physical, Chemical & Earth Sciences
Citazioni:
12
Recensione:
Indirizzi per estratti:
Indirizzo: Maciejewski, A Nicholas Copernicus Univ, Ctr Astron, PL-87100 Torun, Poland Nicholas Copernicus Univ Torun Poland PL-87100 un, Poland
Citazione:
A. Maciejewski et al., "Simple quadratic derivations in two variables", COMM ALGEB, 29(11), 2001, pp. 5095-5113

Abstract

Let k[x, y] be the polynomial ring in two variables over an algebraically closed field k of characteristic zero. We call quadratic derivations the derivations of k[x,y] of the formpartial derivative/partial derivativex + (y(2) + a(x)y + b(x))partial derivative/partial derivativey,where a(x), b(x) is an element of k[x]. We are interested in simple derivations of this type; every such derivation is equivalent to Delta (p) = partial derivative/partial derivativex + (y(2) - p(x))partial derivative/partial derivativey for a suitable p in k[x]. For some p, we are able to decide the simplicity of Deltap: if the degree of p is odd, then Delta (p) is simple; if p has degree 2, then Delta (p) issimple if and only if p fulfills an arithmetic condition.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 23/09/20 alle ore 14:44:42