Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Time evolution of thermodynamic entropy for conservative and dissipative chaotic maps
Autore:
Baranger, M; Latora, V; Rapisarda, A;
Indirizzi:
Univ Catania, Dipartimento Fis & Astron, I-95129 Catania, Italy Univ Catania Catania Italy I-95129 Fis & Astron, I-95129 Catania, Italy Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy Ist Nazl Fis Nucl Catania Italy I-95129 Catania, I-95129 Catania, Italy MIT, Nucl Sci Lab, Ctr Theoret Phys, Cambridge, MA 02139 USA MIT Cambridge MA USA 02139 Lab, Ctr Theoret Phys, Cambridge, MA 02139 USA MIT, Dept Phys, Cambridge, MA 02139 USA MIT Cambridge MA USA 02139MIT, Dept Phys, Cambridge, MA 02139 USA Univ Paris 11, Lab Phys Theor & Modeles Stat, F-91405 Orsay, France Univ Paris 11 Orsay France F-91405 & Modeles Stat, F-91405 Orsay, France
Titolo Testata:
CHAOS SOLITONS & FRACTALS
fascicolo: 3, volume: 13, anno: 2002,
pagine: 471 - 478
SICI:
0960-0779(200203)13:3<471:TEOTEF>2.0.ZU;2-Z
Fonte:
ISI
Lingua:
ENG
Soggetto:
LYAPUNOV INSTABILITY; INITIAL CONDITIONS; NONEXTENSIVITY; SENSITIVITY; EQUILIBRIUM; SYSTEMS; RANGE; MODEL;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Physical, Chemical & Earth Sciences
Citazioni:
26
Recensione:
Indirizzi per estratti:
Indirizzo: Latora, V Univ Catania, Dipartimento Fis & Astron, Corso Italia 57, I-95129 Catania,Italy Univ Catania Corso Italia 57 Catania Italy I-95129 atania,Italy
Citazione:
M. Baranger et al., "Time evolution of thermodynamic entropy for conservative and dissipative chaotic maps", CHAOS SOL F, 13(3), 2002, pp. 471-478

Abstract

We consider several low-dimensional chaotic maps started in far-from-equilibrium initial conditions and we study the process of relaxation to equilibrium. In the case of conservative maps the Boltzmann-Gibbs entropy S(t) increases linearly in time with a slope equal to the Kolmogorov-Sinai entropy rate. The same result is obtained also for a simple case of dissipative system, the logistic map, when considered in the chaotic regime. A very interesting results is found at the chaos threshold. In this case, the usual Boltzmann-Gibbs is not appropriate and in order to have a linear increase, as for the chaotic case, we need to use the generalized q-dependent Tsallis entropy S-q(t) with a particular value of a q different from 1 (when q = I thegeneralized entropy reduces to the Boltzmann-Gibbs). The entropic index q appears to be characteristic of the dynamical system. (C) 2001 Elsevier Science Ltd. All rights reserved.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 06/04/20 alle ore 08:45:19