Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Simple polynomial classes of chaotic jerky dynamics
Autore:
Eichhorn, R; Linz, SJ; Hanggi, P;
Indirizzi:
Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany Univ Augsburg Augsburg Germany D-86135 t Phys, D-86135 Augsburg, Germany
Titolo Testata:
CHAOS SOLITONS & FRACTALS
fascicolo: 1, volume: 13, anno: 2002,
pagine: 1 - 15
SICI:
0960-0779(200201)13:1<1:SPCOCJ>2.0.ZU;2-G
Fonte:
ISI
Lingua:
ENG
Soggetto:
BEHAVIOR; SYSTEMS; EQUATION; MOTION; FLOWS;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Physical, Chemical & Earth Sciences
Citazioni:
33
Recensione:
Indirizzi per estratti:
Indirizzo: Eichhorn, R Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany Univ Augsburg Augsburg Germany D-86135 135 Augsburg, Germany
Citazione:
R. Eichhorn et al., "Simple polynomial classes of chaotic jerky dynamics", CHAOS SOL F, 13(1), 2002, pp. 1-15

Abstract

Third-order explicit autonomous differential equations, commonly called jerky dynamics, constitute a powerful approach to understand the properties of functionally very simple but nonlinear three-dimensional dynamical systems that can exhibit chaotic longtime behavior. In this paper, we investigatethe dynamics that can be generated by the two simplest polynomial jerky dynamics that, up to these days, are known to show chaotic behavior in some parameter range. After deriving several analytical properties of these systems, we systematically determine the dependence of the long-time dynamical behavior on the system parameters by numerical evaluation of Lyapunov spectra. Some features of the systems that are related to the dependence on initial conditions are also addressed. The observed dynamical complexity of the two systems is discussed in connection with the existence of homoclinic orbits. (C) 2001 Elsevier Science Ltd. All rights reserved.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 25/02/20 alle ore 06:08:07