Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
A high-strain-rate superplastic ceramic
Autore:
Kim, BN; Hiraga, K; Morita, K; Sakka, Y;
Indirizzi:
Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan Natl Inst Mat Sci Tsukuba Ibaraki Japan 3050047 a, Ibaraki 3050047, Japan
Titolo Testata:
NATURE
fascicolo: 6853, volume: 413, anno: 2001,
pagine: 288 - 291
SICI:
0028-0836(20010920)413:6853<288:AHSC>2.0.ZU;2-E
Fonte:
ISI
Lingua:
ENG
Soggetto:
TETRAGONAL ZIRCONIA; DEFORMATION; CAVITATION;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Agriculture,Biology & Environmental Sciences
Life Sciences
Physical, Chemical & Earth Sciences
Citazioni:
15
Recensione:
Indirizzi per estratti:
Indirizzo: Kim, BN Natl Inst Mat Sci, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan Natl Inst Mat Sci 1-2-1 Sengen Tsukuba Ibaraki Japan 3050047 Japan
Citazione:
B.N. Kim et al., "A high-strain-rate superplastic ceramic", NATURE, 413(6853), 2001, pp. 288-291

Abstract

High-strain-rate superplasticity describes the ability of a material to sustain large plastic deformation in tension at high strain rates of the order of 10(-2) to 10(-1) s(-1) and is of great technological interest for the shape-forming of engineering materials. High-strain-rate superplasticity has been observed in aluminium-based(1) and magnesium-based(2) alloys. But for ceramic materials, superplastic deformation has been restricted to low strain rates of the order of 10(-5) to 10(-4) s(-1) for most oxides(3,4) and nitrides(5) with the presence of intergranular cavities leading to premature failure. Here we show that a composite ceramic material consisting of tetragonal zirconium oxide, magnesium aluminate spinel and a-alumina phases exhibits superplasticity at strain rates up to 1 s(-1). The composite also exhibits a large tensile elongation, exceeding 1,050 per cent for a strain rate of 0.4 s(-1). The tensile flow behaviour and deformed microstructure of the material indicate that superplasticity is due to a combination of limited grain growth in the constitutive phases and the intervention of dislocation-induced plasticity in the zirconium oxide phase. We suggest that the present results hold promise for the application of shape-forming technologies to ceramic materials.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 10/07/20 alle ore 12:53:31