Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Near-axis subsidence rates, hydrothermal circulation, and thermal structure of mid-ocean ridge crests
Autore:
Cochran, JR; Buck, WR;
Indirizzi:
Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA Columbia Univ Palisades NY USA 10964 arth Observ, Palisades, NY 10964 USA
Titolo Testata:
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH
fascicolo: B9, volume: 106, anno: 2001,
pagine: 19233 - 19258
SICI:
0148-0227(20010910)106:B9<19233:NSRHCA>2.0.ZU;2-M
Fonte:
ISI
Lingua:
ENG
Soggetto:
EAST PACIFIC RISE; ACCRETING PLATE BOUNDARIES; DE-FUCA-RIDGE; HEAT-FLOW; VENT COMMUNITIES; MIDOCEAN RIDGES; ATLANTIC RIDGE; UPPER-MANTLE; CRUST; LITHOSPHERE;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Physical, Chemical & Earth Sciences
Citazioni:
81
Recensione:
Indirizzi per estratti:
Indirizzo: Cochran, JR Columbia Univ, Lamont Doherty Earth Observ, 109 Oceanog Bldg, Palisades, NY 10964 USA Columbia Univ 109 Oceanog Bldg Palisades NY USA 10964 0964 USA
Citazione:
J.R. Cochran e W.R. Buck, "Near-axis subsidence rates, hydrothermal circulation, and thermal structure of mid-ocean ridge crests", J GEO R-SOL, 106(B9), 2001, pp. 19233-19258

Abstract

We systematically investigated near-axis subsidence on the ridge flanks ofintermediate and fast spreading mid-ocean ridges using bathymetric data from well-surveyed portions of the Southeast Indian Ridge (spreading at 72-76mm/yr), the northern East Pacific Rise (91-96 mm/yr), and the southern East Pacific Rise (144 mm/yr). In all three regions, the mean subsidence rate of young (<1-1.4 Ma) seafloor is less than 220 m/m.y.(1/2). The distribution of individual estimates shows a distinct peak at 180-220 m/m.y.(1/2) withfew profiles having subsidence rates greater than 275 m/m.y.(1/2). The observed subsidence rates are significantly lower than both the worldwide average (-350 m/m.y.(1/2)) and subsidence rates observed for older lithosphere at the same ridge segments. Intense hydrothermal circulation at the ridge axis can result in low subsidence rates on the adjacent ridge flanks provided the vigorous flow is confined to the immediate vicinity (< similar to5 km) of the axis. According to our model, the extremely vigorous hydrothermal circulation ceases off-axis, and conductive heat flow becomes a primary mechanism of vertical heat transport on the ridge flanks. The very low geothermal gradient within the cooled portion of the uppermost lithosphere retardsconductive cooling, and the cooled area needs to be heated from below before a geothermal gradient can be established which permits significant heat to be conducted out of the lithosphere. As a result, subsidence in very young (similar to0.1-1 Mal lithosphere is suppressed. A simple one-dimensionalthermal model with a Nusselt number parameterization was used to estimate the effect of hydrothermal circulation. An upper layer with a high Nusselt number and the half-space that it overlies are initially at a temperature of 1300 degreesC and the surface is maintained at 0 degreesC. After 0.1 m.y.of cooling (about 3.5 to 7 km from the spreading axis), the Nusselt numberof the top layer is set to I so that normal conduction is simulated in thecooled layer. We used an explicit finite difference method to solve for the temporal changes in temperature with depth. This model produces subsidence rates in the range that we observe for Nu in the range of 15-30. Isotherms resulting from the modeling imply rapid lithospheric thickening very nearthe axis, which is incompatible with most current models for the formationof the bathymetric axial high observed at fast spreading mid-ocean ridges.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 01/06/20 alle ore 23:48:37