Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
The necessity of Shishkin decompositions
Autore:
Linss, T;
Indirizzi:
Tech Univ Dresden, Inst Numer Math, D-01062 Dresden, Germany Tech Univ Dresden Dresden Germany D-01062 Math, D-01062 Dresden, Germany
Titolo Testata:
APPLIED MATHEMATICS LETTERS
fascicolo: 7, volume: 14, anno: 2001,
pagine: 891 - 896
SICI:
0893-9659(200110)14:7<891:TNOSD>2.0.ZU;2-5
Fonte:
ISI
Lingua:
ENG
Soggetto:
MESH;
Keywords:
convection-diffusion problems; interpolation error; singular perturbation; layer-adapted meshes; Shishkin decomposition;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Physical, Chemical & Earth Sciences
Citazioni:
14
Recensione:
Indirizzi per estratti:
Indirizzo: Linss, T Tech Univ Dresden, Inst Numer Math, D-01062 Dresden, Germany TechUniv Dresden Dresden Germany D-01062 1062 Dresden, Germany
Citazione:
T. Linss, "The necessity of Shishkin decompositions", APPL MATH L, 14(7), 2001, pp. 891-896

Abstract

In the present paper, we study model singularly perturbed convection-diffusion problems with exponential boundary layers, It has been believed for some time that only a complete splitting of the exact solution into regular and layer parts provides the information necessary for the study of the uniform convergence properties of numerical methods for these problems on layer-adapted grids (such as Shishkin meshes). In the present paper, we give newproofs of uniform interpolation error estimates for linear and bilinear interpolation; these proofs are based on the older a priori bounds derived byKellogg and Tsan [1]. (C) 2001 Elsevier Science Ltd. All rights reserved.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 02/07/20 alle ore 23:49:47