Catalogo Articoli (Spogli Riviste)
OPAC HELP
Titolo: Nonlinear particle tracking for highorder elements
Autore: Coppola, G; Sherwin, SJ; Peiro, J;
 Indirizzi:
 Univ London Imperial Coll Sci Technol & Med, Dept Aeronaut, London SW7 2BY, England Univ London Imperial Coll Sci Technol & Med London England SW7 2BY gland
 Titolo Testata:
 JOURNAL OF COMPUTATIONAL PHYSICS
fascicolo: 1,
volume: 172,
anno: 2001,
pagine: 356  386
 SICI:
 00219991(20010901)172:1<356:NPTFHE>2.0.ZU;2B
 Fonte:
 ISI
 Lingua:
 ENG
 Keywords:
 particle tracking; highorder elements; flow visualization;
 Tipo documento:
 Article
 Natura:
 Periodico
 Settore Disciplinare:
 Physical, Chemical & Earth Sciences
 Citazioni:
 17
 Recensione:
 Indirizzi per estratti:
 Indirizzo: Coppola, G Univ London Imperial Coll Sci Technol & Med, Dept Aeronaut, London SW7 2BY, England Univ London Imperial Coll Sci Technol & Med London England SW7 2BY



 Citazione:
 G. Coppola et al., "Nonlinear particle tracking for highorder elements", J COMPUT PH, 172(1), 2001, pp. 356386
Abstract
The problem of calculating particle trajectories on unstructured meshes using a highorder polynomial approximation of the velocity field is addressed. The calculation of the particle trajectory is based on a RungeKutta integration in time. A convenient way of implementing highorder approximations is to employ an auxiliary mapping that transforms a finite element into atopologically equivalent parent element within a normalized parametric space. This presents two possible choices of space in which to perform the time integration of the particle position: the physical space or the parametric space. We present algorithms for implementing both particle tracking strategies using highorder elements and discuss their merits. The main drawback of both methods is their reliance on nonlinear procedures to calculate the particle trajectory. A novel alternative hybrid approach that advances a particle in both the physical and the parametric space without requiring nonlinear iterations is proposed. The error introduced by the alternative linearized procedures and their effect in the rate of convergence of the time integration is discussed. Finally, the performance of the different algorithms is compared using a set of analytical and computational, linear and highorder, velocity fields. (C) 2001 Academic Press.
ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 29/03/20 alle ore 09:15:39