Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Optoacoustic sources: a practical Green function-based model for thin filmlaser-ultrasound generation
Autore:
Menichelli, D; Biagi, E;
Indirizzi:
Dipartimento Elettron & Telecomunicaz, I-50139 Florence, Italy Dipartimento Elettron & Telecomunicaz Florence Italy I-50139 ence, Italy
Titolo Testata:
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS
fascicolo: 4, volume: 3, anno: 2001,
pagine: S23 - S31
SICI:
1464-4258(200107)3:4<S23:OSAPGF>2.0.ZU;2-K
Fonte:
ISI
Lingua:
ENG
Soggetto:
WAVEFORMS; PROBE; PULSE;
Keywords:
optoacoustic ultrasound generation; thermoelasticity; Green function; laser generated ultrasounds; ultrasonic sources; optical fibre;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Physical, Chemical & Earth Sciences
Engineering, Computing & Technology
--discip_EC--
Citazioni:
24
Recensione:
Indirizzi per estratti:
Indirizzo: Menichelli, D Dipartimento Elettron & Telecomunicaz, Via S Marta 3, I-50139 Florence, Italy Dipartimento Elettron & Telecomunicaz Via S Marta 3 Florence Italy I-50139
Citazione:
D. Menichelli e E. Biagi, "Optoacoustic sources: a practical Green function-based model for thin filmlaser-ultrasound generation", J OPT A-P A, 3(4), 2001, pp. S23-S31

Abstract

The theory of optoacoustic generation of ultrasound in fluids through the thermoelastic effect has been addressed, considering the case of a thin absorbing film used as a target for the laser light. A novel theoretical method, based on the use of the Green function and of the image theorem, has been developed and discussed. The model is mainly carried out in time and space domains, and connects the sound field directly to the laser pulse intensity through equations that show the relevant underlying phenomena. With respect to standard double transform (Laplace + Hankel) techniques, it ensures a simpler physical understanding and appears to be more robust from the computational point of view. Moreover it allows us to identify the approximations that may simplify many practical problems. Many approximate formulae are deduced, in addition to the most significant ultrasonic pressure field parameters, such as amplitude and bandwidth, which are explicitly evaluated in terms of laser excitation and of the materials characteristics.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 29/03/20 alle ore 17:19:03