Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Bulk singularities at critical end points: a field-theory analysis
Autore:
Diehl, HW; Smock, M;
Indirizzi:
Univ Essen Gesamthsch, Fachbereich Phys, D-45117 Essen, Germany Univ EssenGesamthsch Essen Germany D-45117 Phys, D-45117 Essen, Germany
Titolo Testata:
EUROPEAN PHYSICAL JOURNAL B
fascicolo: 4, volume: 21, anno: 2001,
pagine: 567 - 587
SICI:
1434-6028(200106)21:4<567:BSACEP>2.0.ZU;2-7
Fonte:
ISI
Lingua:
ENG
Soggetto:
BINARY-LIQUID MIXTURES; RENORMALIZATION-GROUP; CRITICAL ADSORPTION; PHASE BOUNDARIES; FLUID MIXTURE; 2 DIMENSIONS; MODEL; BEHAVIOR; UNIVERSALITY; TRANSITIONS;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Physical, Chemical & Earth Sciences
Citazioni:
56
Recensione:
Indirizzi per estratti:
Indirizzo: Diehl, HW Univ Essen Gesamthsch, Fachbereich Phys, D-45117 Essen, Germany Univ Essen Gesamthsch Essen Germany D-45117 117 Essen, Germany
Citazione:
H.W. Diehl e M. Smock, "Bulk singularities at critical end points: a field-theory analysis", EUR PHY J B, 21(4), 2001, pp. 567-587

Abstract

A class of continuum models with a critical end point is considered whose Hamiltonian H[phi, psi] involves two densities: a primary order-parameter field, phi, and a secondary (noncritical) one, psi. Field-theoretic methods (renormalization group results in conjunction with functional methods) are used to give a systematic derivation of singularities occurring at criticalend points. Specifically, the thermal singularity similar to /t/(2-alpha) of the first-order line on which the disordered or ordered phase coexists with the noncritical spectator phase, and the coexistence singularity similar to /t/(1-alpha) or similar to /t/(beta) of the secondary density < psi > are derived. It is clarified how the renormalization group (RG) scenario found in position-space RG calculations, in which the critical end point and the critical line are mapped onto two separate fixed points P*(CEP) and P*(lambda) translates into field theory. The critical RG eigenexponents of P*(CEP) and P*(lambda) are shown to match. P*(CEP) is demonstrated to have a discontinuity eigenperturbation (with eigenvalue y = d), tangent to the unstable trajectory that emanates from P*(CEP) and leads to P*(lambda). The nature and origin of this eigenperturbation as well as the role redundant operators play are elucidated. The results validate that the critical behavior at the end point is the same as on the critical line.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 06/04/20 alle ore 07:35:21