Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Long-term effects of 'ecstasy' abuse on the human brain studied by FDG PET
Autore:
Buchert, R; Obrocki, J; Thomasius, R; Vaterlein, O; Petersen, K; Jenicke, L; Bohuslavizki, KH; Clausen, M;
Indirizzi:
Univ Hamburg, Hosp Eppendorf, Dept Nucl Med, D-20246 Hamburg, Germany UnivHamburg Hamburg Germany D-20246 Nucl Med, D-20246 Hamburg, Germany
Titolo Testata:
NUCLEAR MEDICINE COMMUNICATIONS
fascicolo: 8, volume: 22, anno: 2001,
pagine: 889 - 897
SICI:
0143-3636(200108)22:8<889:LEO'AO>2.0.ZU;2-N
Fonte:
ISI
Lingua:
ENG
Soggetto:
CENTRAL SEROTONERGIC NEURONS; POSITRON-EMISSION-TOMOGRAPHY; MDMA ECSTASY; (+/-)3,4-METHYLENEDIOXYMETHAMPHETAMINE MDMA; 3,4-METHYLENEDIOXYMETHAMPHETAMINE MDMA; NONHUMAN-PRIMATES; METABOLIC-RATE; UPTAKE SITES; METHYLENEDIOXYMETHAMPHETAMINE; NEUROTOXICITY;
Keywords:
ecstasy; cerebral glucose metabolism; positron emission tomography; 2-[F-18]-fluoro-2-deoxy-d-glucose;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Clinical Medicine
Citazioni:
51
Recensione:
Indirizzi per estratti:
Indirizzo: Buchert, R Univ Hamburg, Hosp Eppendorf, Dept Nucl Med, Martinistr 52, D-20246 Hamburg, Germany Univ Hamburg Martinistr 52 Hamburg Germany D-20246 rg, Germany
Citazione:
R. Buchert et al., "Long-term effects of 'ecstasy' abuse on the human brain studied by FDG PET", NUCL MED C, 22(8), 2001, pp. 889-897

Abstract

The popular recreational drug, 'ecstasy', mainly contains 3,4-methylenedioxymethamphetamine (MDMA) as the psychotropic agent. MDMA is suspected of causing neurotoxic lesions to the serotonergic system as demonstrated by animal studies, examinations of human cerebrospinal fluid, and the first positron emission tomography (PET) studies using the serotonin transporter ligand[C-11]-McN5652. Damage of serotonergic afferents might mediate long-lasting alterations of cerebral glucose metabolism as a secondary effect. To study a relationship between ecstasy use and long-lasting alterations, PET using 2-[F-18]-fluoro-2-deoxy-d-glucose (FDG) was performed in 93 ecstasy usersand 27 subjects without any known history of illicit-drug abuse. As an index of glucose metabolism, mean normalized FDG uptake was determined in bothgroups using a computerized brain atlas, and was compared for a selected number of brain regions. FDG uptake was normalized in each individual by dividing local FDG uptake by the maximum FDG uptake in the individual's brain. Within the group of ecstasy users we examined the relationship between FDGuptake and cumulative ecstasy dose, time since last ecstasy ingestion at the time of PET scanning, and age at first ecstasy use, respectively. Normalized FDG uptake was reduced within the striatum and amygdala of ecstasy users when compared to controls. No statistically significant correlation of the FDG uptake and the cumulative dose of ecstasy was detected. A positive correlation was found in the cingulate between FDG uptake and the time sincelast ecstasy ingestion. As compared to the control group, normalized FDG uptake in the cingulate was reduced in ecstasy users who took ecstasy duringthe last 6 months, while it was elevated in Former ecstasy users who did not consume ecstasy for more than 1 year. FDG uptake was significantly more affected in ecstasy users who started to consume ecstasy before the age of 18 years. In conclusion, ecstasy abuse causes long-lasting effects on glucose metabolism in the human brain. These effects are more severe in the caseof very early abuse. However, several questions still remain to be answered, i.e. the correlation of the neuronal alterations and the history of ecstasy use (cumulative dose, and time since the last dose) and its reversibility. ((C) 2001 Lippincott Williams & Wilkins).

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 26/01/20 alle ore 01:18:04