Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Natural signal statistics and sensory gain control
Autore:
Schwartz, O; Simoncelli, EP;
Indirizzi:
NYU, Ctr Neural Sci, Howard Hughes Med Inst, New York, NY 10003 USA NYU New York NY USA 10003 Howard Hughes Med Inst, New York, NY 10003 USA NYU, Courant Inst Math Sci, New York, NY 10003 USA NYU New York NY USA 10003 , Courant Inst Math Sci, New York, NY 10003 USA
Titolo Testata:
NATURE NEUROSCIENCE
fascicolo: 8, volume: 4, anno: 2001,
pagine: 819 - 825
SICI:
1097-6256(200108)4:8<819:NSSASG>2.0.ZU;2-3
Fonte:
ISI
Lingua:
ENG
Soggetto:
PRIMARY VISUAL-CORTEX; CAT STRIATE CORTEX; SIMPLE CELLS; ORIENTATION SELECTIVITY; PATTERN-VISION; AUDITORY-NERVE; NORMALIZATION; INHIBITION; IMAGES; INTEGRATION;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Life Sciences
Citazioni:
50
Recensione:
Indirizzi per estratti:
Indirizzo: Simoncelli, EP NYU, Ctr Neural Sci, Howard Hughes Med Inst, New York, NY 10003 USA NYU New York NY USA 10003 Med Inst, New York, NY 10003 USA
Citazione:
O. Schwartz e E.P. Simoncelli, "Natural signal statistics and sensory gain control", NAT NEUROSC, 4(8), 2001, pp. 819-825

Abstract

We describe a form of nonlinear decomposition that is well-suited for efficient encoding of natural signals. Signals are initially decomposed using abank of linear filters. Each filter response is then rectified and dividedby a weighted sum of rectified responses of neighboring filters. We show that this decomposition, with parameters optimized for the statistics of a generic ensemble of natural images or sounds, provides a good characterization of the nonlinear response properties of typical neurons in primary visual cortex or auditory nerve, respectively. These results suggest that nonlinear response properties of sensory neurons are not an accident of biological implementation, but have an important functional role.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 30/10/20 alle ore 00:35:46