Catalogo Articoli (Spogli Riviste)
OPAC HELP
Titolo: Maximumlikelihood expectationmaximization reconstruction of sinograms with arbitrary noise distribution using NECtransformations
Autore: Nuyts, J; Michel, C; Dupont, P;
 Indirizzi:
 Katholieke Univ Leuven, Dept Nucl Med, B3000 Louvain, Belgium Katholieke Univ Leuven Louvain Belgium B3000 d, B3000 Louvain, Belgium Univ Catholique Louvain, PET Lab, B1348 Louvain, Belgium Univ Catholique Louvain Louvain Belgium B1348 , B1348 Louvain, Belgium
 Titolo Testata:
 IEEE TRANSACTIONS ON MEDICAL IMAGING
fascicolo: 5,
volume: 20,
anno: 2001,
pagine: 365  375
 SICI:
 02780062(200105)20:5<365:MEROSW>2.0.ZU;2Y
 Fonte:
 ISI
 Lingua:
 ENG
 Soggetto:
 POSITRONEMISSIONTOMOGRAPHY; IMAGERECONSTRUCTION; ITERATIVE RECONSTRUCTION; ATTENUATION CORRECTION; ALGORITHMS; SCANNER;
 Tipo documento:
 Article
 Natura:
 Periodico
 Settore Disciplinare:
 Clinical Medicine
 Engineering, Computing & Technology
 Citazioni:
 18
 Recensione:
 Indirizzi per estratti:
 Indirizzo: Nuyts, J Katholieke Univ Leuven, Dept Nucl Med, B3000 Louvain, Belgium Katholieke Univ Leuven Louvain Belgium B3000 Louvain, Belgium



 Citazione:
 J. Nuyts et al., "Maximumlikelihood expectationmaximization reconstruction of sinograms with arbitrary noise distribution using NECtransformations", IEEE MED IM, 20(5), 2001, pp. 365375
Abstract
The maximumlikelihood (ML) expectationmaximization (EM) [MLEM] algorithm is being widely used for image reconstruction in positron emission tomography, The algorithm is strictly valid if the data are Poisson distributed. However, it is also often applied to processed sinograms that do not meet this requirement, This may sometimes lead to suboptimal results: streak artifacts appear and the algorithm converges toward a lower likelihood value. As a remedy, we propose two simple pixelbypixel methods [noise equivalent counts (NEC)scaling and NECshifting] in order to transform arbitrary sinogram noise into noise which is approximately Poisson distributed (the firstand second moments of the distribution match those of the Poisson distribution). The convergence speed associated with both transformation methods iscompared, and the NECscaling method is validated with both simulations and clinical data,These new methods extend the MLEM algorithm to a general purpose nonnegative reconstruction algorithm.
ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 20/01/20 alle ore 07:38:02