Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
A rapid method for computing the inverse of the gametic covariance matrix between relatives for a marked Quantitative Trait Locus
Autore:
Abdel-Azim, G; Freeman, AE;
Indirizzi:
Iowa State Univ, Dept Anim Sci, Ames, IA 50011 USA Iowa State Univ Ames IA USA 50011 Univ, Dept Anim Sci, Ames, IA 50011 USA
Titolo Testata:
GENETICS SELECTION EVOLUTION
fascicolo: 2, volume: 33, anno: 2001,
pagine: 153 - 173
SICI:
0999-193X(200103/04)33:2<153:ARMFCT>2.0.ZU;2-P
Fonte:
ISI
Lingua:
ENG
Soggetto:
LINEAR UNBIASED PREDICTION; REDUCED ANIMAL-MODEL; ASSISTED SELECTION; BREEDING SCHEMES; VALUES;
Keywords:
gametic relationship; marker-assisted selection; best linear unbiased; prediction;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Agriculture,Biology & Environmental Sciences
Citazioni:
14
Recensione:
Indirizzi per estratti:
Indirizzo: Abdel-Azim, G Iowa State Univ, Dept Anim Sci, Ames, IA 50011 USA Iowa State Univ Ames IA USA 50011 m Sci, Ames, IA 50011 USA
Citazione:
G. Abdel-Azim e A.E. Freeman, "A rapid method for computing the inverse of the gametic covariance matrix between relatives for a marked Quantitative Trait Locus", GEN SEL EVO, 33(2), 2001, pp. 153-173

Abstract

The inverse of the gametic covariance matrix between relatives, G(-1), fora marked quantitative trait locus (QTL) is required in best linear unbiased prediction (BLUP) of breeding values if marker data are available on a QTL. A rapid method for computing the inverse of a gametic relationship matrix for a marked QTL without building G itself is presented. The algorithm isparticularly useful due to the approach taken in computing inbreeding coefficients by having to compute only few elements of G. Numerical techniques for determining, storing, and computing the required elements of G and the nonzero elements of the inverse are discussed. We show that the subset of Grequired for computing the inbreeding coefficients and hence the inverse is a tiny proportion of the whole matrix and can be easily stored in computer memory using sparse matrix storage techniques. We also introduce an algorithm to determine the maximum set of nonzero elements that can be found in G(-1) and a strategy to efficiently store and access them. Finally, we demonstrate that the inverse can be efficiently built using the present techniques for very large and inbred populations.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 26/09/20 alle ore 05:02:48