Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
An evaluation of standard retrieval algorithms and a binary neural approach
Autore:
Hodge, VJ; Austin, J;
Indirizzi:
Univ York, Dept Comp Sci, York YO10 5DD, N Yorkshire, England Univ York York N Yorkshire England YO10 5DD O10 5DD, N Yorkshire, England
Titolo Testata:
NEURAL NETWORKS
fascicolo: 3, volume: 14, anno: 2001,
pagine: 287 - 303
SICI:
0893-6080(200104)14:3<287:AEOSRA>2.0.ZU;2-0
Fonte:
ISI
Lingua:
ENG
Soggetto:
PARTIAL-MATCH RETRIEVAL;
Keywords:
information retrieval algorithm; binary neural network; correlation matrix memory; word-document association; partial match; storage efficiency; speed of training; speed of retrieval;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Engineering, Computing & Technology
Citazioni:
17
Recensione:
Indirizzi per estratti:
Indirizzo: Hodge, VJ Univ York, Dept Comp Sci, York YO10 5DD, N Yorkshire, England Univ York York N Yorkshire England YO10 5DD Yorkshire, England
Citazione:
V.J. Hodge e J. Austin, "An evaluation of standard retrieval algorithms and a binary neural approach", NEURAL NETW, 14(3), 2001, pp. 287-303

Abstract

In this paper we evaluate a selection of data retrieval algorithms for storage efficiency, retrieval speed and partial matching capabilities using a large Information Retrieval dataset. We evaluate standard data structures, for example inverted file lists and hash tables, but also a novel binary neural network that incorporates: single-epoch training, superimposed coding and associative matching in a binary matrix data structure. We identify thestrengths and weaknesses of the approaches. From our evaluation, the novelneural network approach is superior with respect to training speed and partial match retrieval time. From the results, we make recommendations for the appropriate usage of the novel neural approach. (C) 2001 Elsevier ScienceLtd. All rights reserved.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 26/01/20 alle ore 01:00:04