Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Predicting patient's long-term clinical status after hip arthroplasty using hierarchical decision modelling and data mining
Autore:
Zupan, B; Demsar, J; Smrke, D; Bozikov, K; Stankovski, V; Bratko, I; Beck, JR;
Indirizzi:
Univ Ljubljana, Fac Comp & Informat Sci, SI-1000 Ljubljana, Slovenia Univ Ljubljana Ljubljana Slovenia SI-1000 i, SI-1000 Ljubljana, Slovenia Jozef Stefan Inst, Ljubljana, Slovenia Jozef Stefan Inst Ljubljana Slovenia f Stefan Inst, Ljubljana, Slovenia Baylor Coll Med, Off Informat Technol, Houston, TX 77030 USA Baylor Coll Med Houston TX USA 77030 ormat Technol, Houston, TX 77030 USA Univ Ljubljana, Ctr Clin, Dept Traumatol, Ljubljana, Slovenia Univ Ljubljana Ljubljana Slovenia , Dept Traumatol, Ljubljana, Slovenia
Titolo Testata:
METHODS OF INFORMATION IN MEDICINE
fascicolo: 1, volume: 40, anno: 2001,
pagine: 25 - 31
SICI:
0026-1270(200103)40:1<25:PPLCSA>2.0.ZU;2-G
Fonte:
ISI
Lingua:
ENG
Soggetto:
BACKGROUND KNOWLEDGE;
Keywords:
harris hip score; hip arthroplasty; prognostic models; data mining; hierarchical decision models;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Clinical Medicine
Citazioni:
24
Recensione:
Indirizzi per estratti:
Indirizzo: Zupan, B Univ Ljubljana, Fac Comp & Informat Sci, Trzaska 25, SI-1000 Ljubljana, Slovenia Univ Ljubljana Trzaska 25 Ljubljana Slovenia SI-1000 a, Slovenia
Citazione:
B. Zupan et al., "Predicting patient's long-term clinical status after hip arthroplasty using hierarchical decision modelling and data mining", METH INF M, 40(1), 2001, pp. 25-31

Abstract

Construction of a prognostic model is presented for the long-term outcome after femoral neck fracture treatment with implantation of hip endoprosthesis. While the model is induced from the follow-up data, we show that the use of additional expert knowledge is absolutely crucial to obtain good predictive accuracy. A schema is proposed where domain knowledge is encoded as ahierarchical decision model of which only a part is induced from the data while the rest is specified by the expert. Although applied to hip endoprosthesis domain, the proposed schema is general and can be used for the construction of other prognostic models where both follow-up data and human expertise is available.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 28/11/20 alle ore 21:58:46