Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
An introduction to kernel-based learning algorithms
Autore:
Muller, KR; Mika, S; Ratsch, G; Tsuda, K; Scholkopf, B;
Indirizzi:
GMD FIRST, D-12489 Berlin, Germany GMD FIRST Berlin Germany D-12489GMD FIRST, D-12489 Berlin, Germany Univ Potsdam, D-14469 Potsdam, Germany Univ Potsdam Potsdam Germany D-14469 v Potsdam, D-14469 Potsdam, Germany Electrotech Lab, Tsukuba, Ibaraki 3050031, Japan Electrotech Lab Tsukuba Ibaraki Japan 3050031 uba, Ibaraki 3050031, Japan Barnhill Technol, Savannah, GA 31406 USA Barnhill Technol Savannah GA USA31406 ll Technol, Savannah, GA 31406 USA
Titolo Testata:
IEEE TRANSACTIONS ON NEURAL NETWORKS
fascicolo: 2, volume: 12, anno: 2001,
pagine: 181 - 201
SICI:
1045-9227(200103)12:2<181:AITKLA>2.0.ZU;2-B
Fonte:
ISI
Lingua:
ENG
Soggetto:
SUPPORT VECTOR MACHINES; DISCRIMINANT-ANALYSIS; PATTERN-RECOGNITION; FEATURE-EXTRACTION; NEURAL-NETWORK; CLASSIFICATION; PERFORMANCE; PERCEPTRON; SPACES; SITES;
Keywords:
boosting; Fisher's discriminant; kernel methods; kernel PCA; mathematical programming machines; Mercer kernels; principal component analysis (PCA); single-class classification; support vector machines (SVMs);
Tipo documento:
Review
Natura:
Periodico
Settore Disciplinare:
Engineering, Computing & Technology
Citazioni:
153
Recensione:
Indirizzi per estratti:
Indirizzo: Muller, KR GMD FIRST, D-12489 Berlin, Germany GMD FIRST Berlin Germany D-12489 RST, D-12489 Berlin, Germany
Citazione:
K.R. Muller et al., "An introduction to kernel-based learning algorithms", IEEE NEURAL, 12(2), 2001, pp. 181-201

Abstract

This paper provides an introduction to support vector machines (SVMs), kernel Fisher discriminant analysis, and kernel principal component analysis (PCA), as examples for successful kernel-based learning methods, We first give a short background about Vapnik-Chervonenkis (VC) theory and kernel feature spaces and then proceed to kernel based learning in supervised and unsupervised scenarios including practical and algorithmic considerations. We illustrate the usefulness of kernel algorithms by finally discussing applications such as optical character recognition (OCR) and DNA analysis.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 30/03/20 alle ore 00:02:09