Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Immortalized multipotential mesenchymal cells and the hematopoietic microenvironment
Autore:
Dormady, SP; Bashayan, O; Dougherty, R; Zhang, XM; Basch, RS;
Indirizzi:
NYU, Sch Med, Dept Pathol, New York, NY 10016 USA NYU New York NY USA 10016 U, Sch Med, Dept Pathol, New York, NY 10016 USA NYU, Sch Med, Kaplan Comprehens Canc Ctr, New York, NY 10016 USA NYU New York NY USA 10016 lan Comprehens Canc Ctr, New York, NY 10016 USA
Titolo Testata:
JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH
fascicolo: 1, volume: 10, anno: 2001,
pagine: 125 - 140
SICI:
1525-8165(200102)10:1<125:IMMCAT>2.0.ZU;2-E
Fonte:
ISI
Lingua:
ENG
Soggetto:
MARROW STROMAL CELLS; MURINE BONE-MARROW; SMOOTH-MUSCLE DIFFERENTIATION; FIBROBLAST GROWTH-FACTOR; REPOPULATING STEM-CELLS; IN-VITRO; HUMAN OSTEOBLASTS; CULTURES; EXPRESSION; SUPPORT;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Clinical Medicine
Life Sciences
Citazioni:
63
Recensione:
Indirizzi per estratti:
Indirizzo: Basch, RS NYU, Sch Med, Dept Pathol, New York, NY 10016 USA NYU New York NY USA 10016 , Dept Pathol, New York, NY 10016 USA
Citazione:
S.P. Dormady et al., "Immortalized multipotential mesenchymal cells and the hematopoietic microenvironment", J HEMATH ST, 10(1), 2001, pp. 125-140

Abstract

In an attempt to analyze the cellular and molecular basis of the capacity of bone marrow stromal cells to support hematopoiesis in culture, we developed a series of murine stromal cell lines from a single long-term bone marrow culture (BMC). The cytokines produced by these cells were analyzed usingimmunohistochemical techniques, ribonuclease protection assays (RPA) and RT-PCR. We examined the capacity of these cloned cell lines to replace primary bone marrow-derived stromal cells in long-term bone marrow cultures (LT-BMC) and sought correlations between the capacity to support hematopoiesis in culture with the production of known cytokines. These immortalized linesreplicate many of the functions of the hematopoietic microenvironment. They express cytokines known to play a role in hematopoiesis. All of the linesconstitutively express mRNA for PBSF (SDF-1), macrophage colony-stimulating factor (M-CSF), stem cell factor (SCF), FLT-3, thrombopoietin (TPO), interleukin 7 (IL-7), leukemia inhibitory factor (LIF), tumor necrosis factor-beta (TNF-beta), and interferon-gamma (IFN-gamma). Most lines also express granulocyte-macrophage colony-stimulating factor (GM-CSF) and G-CSF. They vary in their expression of IL-6, tumor growth factor-beta1 (TGF-beta1 ), TGF-beta2, and TNF-alpha. Growing these lines in the presence of cytokines that influence hematopoiesis alters the levels of cytokine message. The most striking effects were produced by TNF-alpha. In addition to the cytokine mRNAs, the cell lines express factors associated with bone formation such as osteoblast-specific factor-2 (OSF-2) and bone morphogenetic protein-1 (BMP-1). They also express the neural cell-adhesion molecule neuropilin and neurotrophic factors including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). Several of the lines can maintain hematopoiesis in culture, as measured by the continuous production of myeloid colony-forming cells (CFU-c), for months. This capacity to support hematopoiesis does not correlate with any pattern of cytokine expression. Several of these lines also support the growth of human hematopoietic cells, and human CFU-c can bedetected in the cultures in which CD34(+) bone marrow cells (BMC) are cultured on murine stromal cells. No correlation between the production of any of the known cytokines and the ability to support murine hematopoiesis was detected. In addition, there was no correlation between the capacity to support murine hematopoiesis and the capacity to maintain human HSC. Despite repeated cloning, the lines remain heterogeneous and are capable of producing cells with the properties of fibroblasts, osteoblasts, adipocytes, and myoblasts. In addition to the cytokine mRNAs, the cell lines express factors associated with bone formation such as OSF-2 and BMP-1. They also express the neural cell-adhesion molecule neuropilin and neurotrophic factors including NGF and BDNF.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 30/09/20 alle ore 09:21:30