Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Autoregressive modeling of transfer functions in frequency domain to determine complex travel times
Autore:
Hasada, Y; Kumagai, H; Kumazawa, M;
Indirizzi:
Nagoya Univ, Dept Earth & Planetary Sci, Nagoya, Aichi, Japan Nagoya UnivNagoya Aichi Japan rth & Planetary Sci, Nagoya, Aichi, Japan Nagoya Univ, Res Ctr Seismol & Volcanol, Nagoya, Aichi, Japan Nagoya UnivNagoya Aichi Japan Seismol & Volcanol, Nagoya, Aichi, Japan Tono Geosci Ctr, Toki, Japan Tono Geosci Ctr Toki JapanTono Geosci Ctr, Toki, Japan
Titolo Testata:
EARTH PLANETS AND SPACE
fascicolo: 1, volume: 53, anno: 2001,
pagine: 3 - 11
SICI:
1343-8832(2001)53:1<3:AMOTFI>2.0.ZU;2-C
Fonte:
ISI
Lingua:
ENG
Soggetto:
SPECTRAL-ANALYSIS; ATTENUATION; VELOCITY; SOMPI;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Physical, Chemical & Earth Sciences
Citazioni:
22
Recensione:
Indirizzi per estratti:
Indirizzo: Hasada, Y Nagoya Univ, Dept Earth & Planetary Sci, Nagoya, Aichi, Japan Nagoya Univ Nagoya Aichi Japan etary Sci, Nagoya, Aichi, Japan
Citazione:
Y. Hasada et al., "Autoregressive modeling of transfer functions in frequency domain to determine complex travel times", EARTH PL SP, 53(1), 2001, pp. 3-11

Abstract

We present a method to determine the complex travel times of impulses in the time domain on the basis of an autoregressive (AR) modeling of superimposed sinusoids in a finite complex series in the frequency domain. We assumethat the complex frequency series consists of signals represented by a complex AR equation with additional noise. The AR model in the frequency domain corresponds to a complex Lorentzian in the time domain. In a similar way to the Sompi or extended Prony method, the complex travel times are given by solutions of a characteristic equation of complex AR coefficients, which are obtained as the eigenvector corresponding to a minimum eigenvalue in aneigenvalue problem of non-Toeplitz autocovariance matrix of the complex series. Our method is tested for synthetic frequency series of transfer functions, which show that (1) the complex travel times of closely adjacent pulses in the time domain are clearly resolved, and that (2) the frequency dependence of the complex travel times for physical and structural dispersions is precisely determined by the analysis within a narrow frequency window. These results demonstrate the usefulness of our method with high resolvability and accuracy in the analysis of impulse sequences.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 03/04/20 alle ore 11:15:37