Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
The synaptic vesicle protein, cysteine-string protein, is associated with the plasma membrane in 3T3-L1 adipocytes and interacts with syntaxin 4
Autore:
Chamberlain, LH; Graham, ME; Kane, S; Jackson, JL; Maier, VH; Burgoyne, RD; Gould, GW;
Indirizzi:
Univ Glasgow, Div Biochem & Mol Biol, Glasgow G12 8QQ, Lanark, Scotland Univ Glasgow Glasgow Lanark Scotland G12 8QQ ow G12 8QQ, Lanark, Scotland Univ Liverpool, Physiol Lab, Liverpool L69 3BX, Merseyside, England Univ Liverpool Liverpool Merseyside England L69 3BX , Merseyside, England
Titolo Testata:
JOURNAL OF CELL SCIENCE
fascicolo: 2, volume: 114, anno: 2001,
pagine: 445 - 455
SICI:
0021-9533(200101)114:2<445:TSVPCP>2.0.ZU;2-C
Fonte:
ISI
Lingua:
ENG
Soggetto:
STIMULATED GLUT4 TRANSLOCATION; PRESYNAPTIC CALCIUM-CHANNEL; N-TYPE; NEUROTRANSMITTER RELEASE; REGULATED EXOCYTOSIS; MUTANT DROSOPHILA; SNAP RECEPTORS; CA2+ CHANNELS; ALPHA-SNAP; CELLS;
Keywords:
cysteine-string protein; exocytosis; membrane fusion; adipocyte; Glut4;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Life Sciences
Citazioni:
65
Recensione:
Indirizzi per estratti:
Indirizzo: Chamberlain, LH Univ Glasgow, Div Biochem & Mol Biol, Davidson Bldg, Glasgow G12 8QQ, Lanark, Scotland Univ Glasgow Davidson Bldg Glasgow Lanark Scotland G12 8QQ
Citazione:
L.H. Chamberlain et al., "The synaptic vesicle protein, cysteine-string protein, is associated with the plasma membrane in 3T3-L1 adipocytes and interacts with syntaxin 4", J CELL SCI, 114(2), 2001, pp. 445-455

Abstract

Adipocytes and muscle cells play a major role in blood glucose homeostasis. This is dependent upon the expression of Glut4, an insulin-responsive facilitative glucose transporter. Glut4 is localised to specialised intracellular vesicles that fuse with the plasma membrane in response to insulin stimulation, The insulin-induced translocation of Glut4 to the cell surface is essential for the maintenance of optimal blood glucose levels, and defects in this system are associated with insulin resistance and type II diabetes. Therefore, a major focus of recent research has been to identify and characterise proteins that regulate Glut4 translocation. Cysteine-string protein(Csp) is a secretory vesicle protein that functions in presynaptic neurotransmission and also in regulated exocytosis from non-neuronal cells. We show that Csp1 is expressed in 3T3-L1 adipocytes and that cellular levels of this protein are increased following cell differentiation. Combined fractionation and immunofluorescence analyses reveal that Csp1 is not a component of intracellular Glut4-storage vesicles (GSVs), but is associated with the adipocyte plasma membrane. This association is stable, and not affected by either insulin stimulation or chemical depalmitoylation of Csp1. We also demonstrate that Csp1 interacts with the t-SNARE syntaxin 4, As syntaxin 4 is an important mediator of insulin-stimulated GSV fusion with the plasma membrane, this suggests that Csp1 may play a regulatory role in this process. Syntaxin 4 interacts specifically with Csp1, but not with Csp2, In contrast,syntaxin 1A binds to both Csp isoforms, and actually exhibits a higher affinity for the Csp2 protein. The results described raise a number of interesting questions concerning the intracellular targeting of Csp in different cell types, and suggest thatthe composition and synthesis of GSVs may be different from synaptic and other secretory vesicles, In addition, the interaction of Csp1 with syntaxin4 suggests that this Csp isoform may play a role in insulin-stimulated fusion of GSVs with the plasma membrane.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 07/07/20 alle ore 05:44:42