Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
On stochastic formalisms in transition state theory
Autore:
Venkatesh, PK;
Indirizzi:
Schlumberger Doll Res, Ridgefield, CT 06877 USA Schlumberger Doll Res Ridgefield CT USA 06877 s, Ridgefield, CT 06877 USA
Titolo Testata:
PHYSICA A
fascicolo: 3-4, volume: 289, anno: 2001,
pagine: 359 - 376
SICI:
0378-4371(20010115)289:3-4<359:OSFITS>2.0.ZU;2-A
Fonte:
ISI
Lingua:
ENG
Soggetto:
INTERMOLECULAR ENERGY-TRANSFER; CHANNEL UNIMOLECULAR REACTIONS; MASTER EQUATION ANALYSIS; C2H5+O-2 REACTION; CHEMICAL-REACTIONS; REACTION-RATES; MULTIPLE-WELL; DEPENDENCE; MECHANISM; INTEGRALS;
Keywords:
stochastic processes; chemical kinetics; statistical theories; stochastic and trajectory models; other theories and models;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Physical, Chemical & Earth Sciences
Citazioni:
39
Recensione:
Indirizzi per estratti:
Indirizzo: Venkatesh, PK Schlumberger Doll Res, Old Quarry Rd, Ridgefield, CT 06877 USA Schlumberger Doll Res Old Quarry Rd Ridgefield CT USA 06877
Citazione:
P.K. Venkatesh, "On stochastic formalisms in transition state theory", PHYSICA A, 289(3-4), 2001, pp. 359-376

Abstract

The simulation of elementary gas-phase reactions in a concentrated bath may be accomplished by a Markoff-chain model. The concept of the state of secular equilibrium, a necessary condition for the existence of rate coefficients local in time, demands that the Markoffian process be modelled using aninhomogeneous Poisson process. Such a Poisson process will possess microcanonical rates which are functions of time. Its simulation can be accomplished by quasi-Monte-Carlo schemes based on low-discrepancy sequences which are also argued here for the computation of the flux integrals over the configurational space within the framework of variational, microcanonical, transition-state theory. (C) 2001 Elsevier Science B.V. All rights reserved.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 01/12/20 alle ore 08:23:01