Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Tests of a new basis for signal processing
Autore:
Shuman, K; Cornell, E;
Indirizzi:
Dartmouth Coll, Dept Math, Hanover, NH 03755 USA Dartmouth Coll Hanover NH USA 03755 oll, Dept Math, Hanover, NH 03755 USA
Titolo Testata:
MATHEMATICAL AND COMPUTER MODELLING
fascicolo: 1-3, volume: 33, anno: 2001,
pagine: 265 - 271
SICI:
0895-7177(200101/02)33:1-3<265:TOANBF>2.0.ZU;2-Z
Fonte:
ISI
Lingua:
ENG
Keywords:
signal processing; Jacobi group; Chebyshev polynomials; sine functions;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Engineering, Computing & Technology
Citazioni:
5
Recensione:
Indirizzi per estratti:
Indirizzo: Shuman, K Dartmouth Coll, Dept Math, Hanover, NH 03755 USA Dartmouth CollHanover NH USA 03755 Math, Hanover, NH 03755 USA
Citazione:
K. Shuman e E. Cornell, "Tests of a new basis for signal processing", MATH COMP M, 33(1-3), 2001, pp. 265-271

Abstract

The Jacobi group G is a semidirect product of SL(2,R) and the three-dimensional Heisenberg group. This group acts on functions on the space H x C, where H: is the upper half plane. The action includes both the windowed Fourier transform and the wavelet transform. As a result, Wallace [1] proposed using the Jacobi group for a signal processing scheme. In this paper, the action of the Jacobi group is used to produce small bases of functions of onevariable. Some properties of the basis functions are examined. The bases are then used to reconstruct Chebyshev polynomials and sine functions in order to test the effectiveness of using G for a signal processing algorithm. (C) 2001 Elsevier Science Ltd. All rights reserved.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 27/11/20 alle ore 13:09:09