Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Dirac strings and monopoles in the continuum limit of SU(2) lattice gauge theory
Autore:
Chernodub, MN; Gubarev, FV; Polikarpov, MI; Zakharov, VI;
Indirizzi:
Inst Theoret & Expt Phys, Moscow 117259, Russia Inst Theoret & Expt Phys Moscow Russia 117259 hys, Moscow 117259, Russia Max Planck Inst Phys, D-80805 Munich, Germany Max Planck Inst Phys Munich Germany D-80805 hys, D-80805 Munich, Germany
Titolo Testata:
NUCLEAR PHYSICS B
fascicolo: 1-2, volume: 592, anno: 2001,
pagine: 107 - 128
SICI:
0550-3213(20010101)592:1-2<107:DSAMIT>2.0.ZU;2-W
Fonte:
ISI
Lingua:
ENG
Soggetto:
QUANTUM-FIELD-THEORY; QUARK CONFINEMENT; ABELIAN DOMINANCE; HIGH-TEMPERATURE; QCD; INSTANTONS; TENSION; PHASE; LOOP; MODEL;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Physical, Chemical & Earth Sciences
Citazioni:
61
Recensione:
Indirizzi per estratti:
Indirizzo: Gubarev, FV Inst Theoret & Expt Phys, B Cheremushkinskaya 25, Moscow 117259, Russia Inst Theoret & Expt Phys B Cheremushkinskaya 25 Moscow Russia 117259
Citazione:
M.N. Chernodub et al., "Dirac strings and monopoles in the continuum limit of SU(2) lattice gauge theory", NUCL PHYS B, 592(1-2), 2001, pp. 107-128

Abstract

Magnetic monopoles are known to emerge as leading non-perturbative fluctuations in the lattice version of non-Abelian gauge theories in some gauges. In terms of the Dirac quantization condition, these monopoles have magneticcharge \Q(M)\ = 2. Also, magnetic monopoles with \Q(M)\ = 1 can be introduced on the lattice via the 't Hooft loop operator. We consider the \Q(M)\ I= 1,2 monopoles in the continuum limit of the lattice gauge theories. To substitute for the Dirac strings which cost no action on the lattice, we allow for singular gauge potentials which are absent in the standard continuumversion. Once the Dirac strings are allowed, it turns possible to find a solution with zero action for a monopole-antimonopole pair. This implies equivalence of the standard and modified continuum versions in perturbation theory. To imitate the nonperturbative vacuum, we introduce then a nonsingular background. The modified continuum version of the gluodynamics allows in this case for monopoles with finite non-vanishing action. Using similar techniques, we construct the 't Hooft loop operator in the continuum and predict its behavior at small and large distances both at zero and high temperatures. (C) 2001 Elsevier Science B.V. All rights reserved.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 08/04/20 alle ore 09:10:53