Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Structural characterisation of the highly deintercalated LixNi1.02O2 phases (with x <= 0.30)
Autore:
Croguennec, L; Pouillerie, C; Mansour, AN; Delmas, C;
Indirizzi:
CNRS, ICMCB, F-33608 Pessac, France CNRS Pessac France F-33608CNRS, ICMCB, F-33608 Pessac, France Ecole Natl Super Chim & Phys Bordeaux, F-33608 Pessac, France Ecole Natl Super Chim & Phys Bordeaux Pessac France F-33608 ssac, France SAFT, F-33074 Bordeaux, France SAFT Bordeaux France F-33074SAFT, F-33074 Bordeaux, France USN, Ctr Surface Warfare, Carderock Div, W Bethesda, MD 20817 USA USN W Bethesda MD USA 20817 fare, Carderock Div, W Bethesda, MD 20817 USA
Titolo Testata:
JOURNAL OF MATERIALS CHEMISTRY
fascicolo: 1, volume: 11, anno: 2001,
pagine: 131 - 141
SICI:
0959-9428(2001)11:1<131:SCOTHD>2.0.ZU;2-5
Fonte:
ISI
Lingua:
ENG
Soggetto:
RAY-ABSORPTION SPECTRA; CATHODE MATERIAL; SOLID-SOLUTION; LINIO2; NICKEL; OXYCOMPOUNDS; LIXCOO2; CHEMISTRY; SYSTEM; OXIDES;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Physical, Chemical & Earth Sciences
Engineering, Computing & Technology
Citazioni:
49
Recensione:
Indirizzi per estratti:
Indirizzo: Croguennec, L CNRS, ICMCB, Av Dr A Schweitzer, F-33608 Pessac, France CNRSAv Dr A Schweitzer Pessac France F-33608 essac, France
Citazione:
L. Croguennec et al., "Structural characterisation of the highly deintercalated LixNi1.02O2 phases (with x <= 0.30)", J MAT CHEM, 11(1), 2001, pp. 131-141

Abstract

The full structural characterisation of the highly deintercalated LixNi1.02O2 (x less than or equal to 0.30) phases has been performed. The structureof the Li0.30Ni1.02O2 phase was refined by the Rietveld method. The cationic distribution was found to be identical to that of the pristine material. A study of the Li//LixNi1.02O2 system at high potential has shown the successive formation of two phases with O3 (AB CA BC) and O1 (AB) oxygen packing, respectively, near the NiO2 composition. Since slab gliding is at the origin of the O3 to O1 transition, layer displacement faults were observed inthese two phases. For the O3 phase, as soon as all the lithium ions are removed from an interslab space, an O1-type fault occurs locally. In contrast, for the O1 phase, the presence of extra-nickel ions in the interslab space prevents slab gliding in the vicinity and, therefore, O3-type interslab spaces remain in the O1-type packing. The X-ray diffraction patterns were simulated using the DIFFaX program. It was shown that the stabilisation of the O1-type packing at the very end of the deintercalation process is due to a minimisation of the interactions between the p orbitals of the oxygen ions through the van der Waals gap. A two-phase domain is observed between Li0.30NiO2 and a composition close to NiO2 since, for very low lithium contents, the Ni3+/Ni4+ ordering (and the lithium/vacancy ordering) is no longer possible and the difference in size between the cations leads to the formation of constraints which destabilise the Ni3+ ions in a lattice where Ni4+ ions prevail. At the end of the deintercalation process, the NiO2 compound appears to be highly covalent, therefore, the steric effects prevail over the electrostatic repulsion effects, as in chalcogenides.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 30/09/20 alle ore 08:55:38