Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Half-space analysis of the defect-correction method for Fromm discretization of convection
Autore:
Diskin, B; Thomas, JL;
Indirizzi:
NASA, Langley Res Ctr, Inst Comp Applicat Sci & Engn, Hampton, VA 23681 USA NASA Hampton VA USA 23681 Comp Applicat Sci & Engn, Hampton, VA 23681 USA NASA, Langley Res Ctr, Computat Modeling & Simulat Branch, Hampton, VA 23681 USA NASA Hampton VA USA 23681 odeling & Simulat Branch, Hampton, VA 23681 USA
Titolo Testata:
SIAM JOURNAL ON SCIENTIFIC COMPUTING
fascicolo: 2, volume: 22, anno: 2000,
pagine: 633 - 655
SICI:
1064-8275(20000831)22:2<633:HAOTDM>2.0.ZU;2-U
Fonte:
ISI
Lingua:
ENG
Soggetto:
FLOWS;
Keywords:
half-space analysis; convection equation; Fromm discretization; defect-correction method;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Physical, Chemical & Earth Sciences
Citazioni:
20
Recensione:
Indirizzi per estratti:
Indirizzo: Diskin, B NASA, Langley Res Ctr, Inst Comp Applicat Sci & Engn, Mail Stop 132C, Hampton, VA 23681 USA NASA Mail Stop 132C Hampton VA USA 23681 , Hampton, VA 23681 USA
Citazione:
B. Diskin e J.L. Thomas, "Half-space analysis of the defect-correction method for Fromm discretization of convection", SIAM J SC C, 22(2), 2000, pp. 633-655

Abstract

A novel, comprehensive, discrete, half-space analysis for the defect-correction method has been developed. This analysis plays the same role for nonelliptic-problem solvers as the full-space Fourier mode analysis plays for elliptic-problem solvers. Numerical simulations con rm the accuracy of the half-space analysis. The following important findings about the defect-correction method applied to the Fromm discretization of the two-dimensional convection equation are reported:1. The initial convergence rate of the defect-correction method is principally a function of the relative accuracy of the operators involved in the defect-correction iterations.2. The asymptotic convergence rate is about 0.5 per defect-correction iteration.3. If the driver operator is first-order accurate, then the initial convergence rates may be slow. The number of iterations required to get into the asymptotic convergence regime or/and to converge the algebraic error below the discretization-error level can be proportional to h(1/3). This h-dependent delay is a multidimensional phenomenon it cannot be observed in one-dimensional problems, and it disappears in the case of close alignment betweenthe grid and the convection equation characteristic.4. If the driver operator is second-order accurate, the defect-correction solver demonstrates the asymptotic convergence rate from the very beginning. Only one defect-correction iteration is required to converge algebraic error substantially below the discretization-error level.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 21/09/20 alle ore 12:00:32