Catalogo Articoli (Spogli Riviste)
OPAC HELP
Titolo: Halfspace analysis of the defectcorrection method for Fromm discretization of convection
Autore: Diskin, B; Thomas, JL;
 Indirizzi:
 NASA, Langley Res Ctr, Inst Comp Applicat Sci & Engn, Hampton, VA 23681 USA NASA Hampton VA USA 23681 Comp Applicat Sci & Engn, Hampton, VA 23681 USA NASA, Langley Res Ctr, Computat Modeling & Simulat Branch, Hampton, VA 23681 USA NASA Hampton VA USA 23681 odeling & Simulat Branch, Hampton, VA 23681 USA
 Titolo Testata:
 SIAM JOURNAL ON SCIENTIFIC COMPUTING
fascicolo: 2,
volume: 22,
anno: 2000,
pagine: 633  655
 SICI:
 10648275(20000831)22:2<633:HAOTDM>2.0.ZU;2U
 Fonte:
 ISI
 Lingua:
 ENG
 Soggetto:
 FLOWS;
 Keywords:
 halfspace analysis; convection equation; Fromm discretization; defectcorrection method;
 Tipo documento:
 Article
 Natura:
 Periodico
 Settore Disciplinare:
 Physical, Chemical & Earth Sciences
 Citazioni:
 20
 Recensione:
 Indirizzi per estratti:
 Indirizzo: Diskin, B NASA, Langley Res Ctr, Inst Comp Applicat Sci & Engn, Mail Stop 132C, Hampton, VA 23681 USA NASA Mail Stop 132C Hampton VA USA 23681 , Hampton, VA 23681 USA



 Citazione:
 B. Diskin e J.L. Thomas, "Halfspace analysis of the defectcorrection method for Fromm discretization of convection", SIAM J SC C, 22(2), 2000, pp. 633655
Abstract
A novel, comprehensive, discrete, halfspace analysis for the defectcorrection method has been developed. This analysis plays the same role for nonellipticproblem solvers as the fullspace Fourier mode analysis plays for ellipticproblem solvers. Numerical simulations con rm the accuracy of the halfspace analysis. The following important findings about the defectcorrection method applied to the Fromm discretization of the twodimensional convection equation are reported:1. The initial convergence rate of the defectcorrection method is principally a function of the relative accuracy of the operators involved in the defectcorrection iterations.2. The asymptotic convergence rate is about 0.5 per defectcorrection iteration.3. If the driver operator is firstorder accurate, then the initial convergence rates may be slow. The number of iterations required to get into the asymptotic convergence regime or/and to converge the algebraic error below the discretizationerror level can be proportional to h(1/3). This hdependent delay is a multidimensional phenomenon it cannot be observed in onedimensional problems, and it disappears in the case of close alignment betweenthe grid and the convection equation characteristic.4. If the driver operator is secondorder accurate, the defectcorrection solver demonstrates the asymptotic convergence rate from the very beginning. Only one defectcorrection iteration is required to converge algebraic error substantially below the discretizationerror level.
ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 21/09/20 alle ore 12:00:32