Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Solute transport with multiprocess nonequilibrium: a semi-analytical solution approach
Autore:
Neville, CJ; Ibaraki, M; Sudicky, EA;
Indirizzi:
Ohio State Univ, Dept Geol Sci, Columbus, OH 43210 USA Ohio State Univ Columbus OH USA 43210 pt Geol Sci, Columbus, OH 43210 USA SS Papadopulos & Associates Inc, Waterloo, ON, Canada SS Papadopulos & Associates Inc Waterloo ON Canada Waterloo, ON, Canada Univ Waterloo, Dept Earth Sci, Waterloo, ON N2L 3G1, Canada Univ WaterlooWaterloo ON Canada N2L 3G1 ci, Waterloo, ON N2L 3G1, Canada
Titolo Testata:
JOURNAL OF CONTAMINANT HYDROLOGY
fascicolo: 2, volume: 44, anno: 2000,
pagine: 141 - 159
SICI:
0169-7722(200007)44:2<141:STWMNA>2.0.ZU;2-5
Fonte:
ISI
Lingua:
ENG
Soggetto:
SORBING POROUS-MEDIA; TRANSFORM GALERKIN TECHNIQUE; MASS-TRANSPORT; NUMERICAL INVERSION; NONIDEAL TRANSPORT; REACTIVE SOLUTES; SORPTION; EQUILIBRIUM; SIMULATION; MODELS;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Agriculture,Biology & Environmental Sciences
Citazioni:
44
Recensione:
Indirizzi per estratti:
Indirizzo: Neville, CJ Ohio State Univ, Dept Geol Sci, Columbus, OH 43210 USA Ohio State Univ Columbus OH USA 43210 Columbus, OH 43210 USA
Citazione:
C.J. Neville et al., "Solute transport with multiprocess nonequilibrium: a semi-analytical solution approach", J CONTAM HY, 44(2), 2000, pp. 141-159

Abstract

A semi-analytical solution for the simulation of one-dimensional subsurface solute transport incorporating multiple nonequilibrium processes is presented. The solution is based on the theory developed by Brusseau et al. (1992) [Brusseau, M.L., Jessup, R.E., Rao, P.S,C., 1992. Modeling solute transport influenced by multiprocess nonequilibrium and transformation reactions,Water Resources Research 28 (1), 175-182.] which is a generalized combination of two-site and two-region model. In addition to developing a semi-analytical complement to their numerical solution, we extend the range of boundary and initial conditions considered, The semi-analytical solution can represent domains of both finite and semi-infinite extent and accommodates nonzero initial concentrations. The solution is derived in Laplace space and final results are obtained using an accurate and robust numerical inversion algorithm. The solution is particularly well suited for interpreting experimental results obtained under controlled laboratory conditions. Identification of the input parameters for the solution is examined by simulating a column experiment by van Genuchten (1974) [van Genuchten, M., 1974. Mass Transfer Studies in Sorbing Porous Media. PhD thesis, New Mexico State University, Las Cruces, NM.]. (C) 2000 Elsevier Science B.V. All rights reserved.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 03/12/20 alle ore 06:03:40