Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Structural group analysis of functional activation maps
Autore:
Coulon, O; Mangin, JF; Poline, JB; Zilbovicius, M; Roumenov, D; Samson, Y; Frouin, V; Bloch, I;
Indirizzi:
Ecole Natl Super Telecommun, Dept TSI, F-75631 Paris 13, France Ecole NatlSuper Telecommun Paris France 13 SI, F-75631 Paris 13, France CEA, Serv Hosp Frederic Joliot, F-91401 Orsay, France CEA Orsay France F-91401 erv Hosp Frederic Joliot, F-91401 Orsay, France
Titolo Testata:
NEUROIMAGE
fascicolo: 6, volume: 11, anno: 2000,
parte:, 1
pagine: 767 - 782
SICI:
1053-8119(200006)11:6<767:SGAOFA>2.0.ZU;2-7
Fonte:
ISI
Lingua:
ENG
Soggetto:
SPACE PRIMAL SKETCH; SCALE-SPACE; STATISTICAL-ANALYSIS; IMAGE SEGMENTATION; BRAIN IMAGES; PET IMAGES;
Keywords:
functional neuroimaging; functional activation; detection; scale space; Markov random fields;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Life Sciences
Citazioni:
36
Recensione:
Indirizzi per estratti:
Indirizzo: Coulon, O Univ Coll London, Dept Comp Sci, Gower St, London WC1E 6BT, England Univ Coll London Gower St London England WC1E 6BT 6BT, England
Citazione:
O. Coulon et al., "Structural group analysis of functional activation maps", NEUROIMAGE, 11(6), 2000, pp. 767-782

Abstract

We present here a new method for cerebral activation detection over a group of subjects. This method is performed using individual activation maps ofany sort. It aims at processing a group analysis while preserving individual information and at overcoming as far as possible limitations of the spatial normalization used to compare different subjects. We designed it such that it provides the individual occurrence of the activations detected at a group level. The localization can then be performed on the individual anatomy of each subject. The analysis starts with a hierarchical multiscale object-based description of each individual map. These descriptions are then compared, rather than comparing the images directly. The analysis is thus performed at an object level instead of voxel by voxel. It is made using a comparison graph, on which a labeling process is performed. The label field onthe graph is modeled by a Markov random field, which allows us to introduce high-level rules of interrogation of the data. The process has been evaluated on simulated data and real data from a PET protocol. (C) 2000 AcademicPress.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 04/07/20 alle ore 15:03:12