Catalogo Articoli (Spogli Riviste)
OPAC HELP
Titolo: The Johnson graphs satisfy a distance extension property
Autore: Dabrowski, A; Moss, LS;
- Indirizzi:
- Indiana Univ, Dept Math, Bloomington, IN 47405 USA Indiana Univ Bloomington IN USA 47405 ept Math, Bloomington, IN 47405 USA
- Titolo Testata:
- COMBINATORICA
fascicolo: 2,
volume: 20,
anno: 2000,
pagine: 295 - 300
- SICI:
- 0209-9683(2000)20:2<295:TJGSAD>2.0.ZU;2-Q
- Fonte:
- ISI
- Lingua:
- ENG
- Tipo documento:
- Article
- Natura:
- Periodico
- Settore Disciplinare:
- Physical, Chemical & Earth Sciences
- Engineering, Computing & Technology
- Citazioni:
- 4
- Recensione:
- Indirizzi per estratti:
- Indirizzo: Dabrowski, A Indiana Univ, Dept Math, Bloomington, IN 47405 USA Indiana Univ Bloomington IN USA 47405 omington, IN 47405 USA
-
-
-
- Citazione:
- A. Dabrowski e L.S. Moss, "The Johnson graphs satisfy a distance extension property", COMBINATORI, 20(2), 2000, pp. 295-300
Abstract
A graph G has property I-k if whenever F and H are connected graphs with \F\ less than or equal to k and \H\ = \F\ + 1, and i : F --> G and j : F -->H are isometric embeddings, then there is an isometric embedding k:H --> Gsuch that k circle j = i. It is easy to construct an infinite graph with I-k for all k, and I-2 holds in almost all finite graphs. Prior to this work, it was not known whether there exist any finite graphs with I-3. We show that the Johnson graphs J(n,3) satisfy I-3 whenever n greater than or equalto 6, and that J(6,3) is the smallest graph satisfying I-3. We also construct finite graphs satisfying Is and local versions of the extension axioms studied in connection with the Rado universal graph.
ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 16/01/21 alle ore 16:02:58