Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Lattice Boltzmann scheme for simulating two-phase flows
Autore:
Seta, T; Kono, K; Martinez, D; Chen, SY;
Indirizzi:
Shizuoka Sangyo Univ, Shizuoka 4380043, Japan Shizuoka Sangyo Univ Shizuoka Japan 4380043 niv, Shizuoka 4380043, Japan Fuji Res Inst Corp, Computat Engn Grp, Chiyoda Ku, Tokyo 1010054, Japan Fuji Res Inst Corp Tokyo Japan 1010054 Chiyoda Ku, Tokyo 1010054, Japan IBM Corp, TJ Watson Res Ctr, Yorktown Heights, NY 10598 USA IBM Corp Yorktown Heights NY USA 10598 tr, Yorktown Heights, NY 10598 USA Univ Calif Los Alamos Natl Lab, IBM Corp, TJ Watson Res Ctr, Yorktown Heights, NY 10598 USA Univ Calif Los Alamos Natl Lab Yorktown Heights NY USA 10598 NY 10598 USA
Titolo Testata:
JSME INTERNATIONAL JOURNAL SERIES B-FLUIDS AND THERMAL ENGINEERING
fascicolo: 2, volume: 43, anno: 2000,
pagine: 305 - 313
SICI:
1340-8054(200005)43:2<305:LBSFST>2.0.ZU;2-K
Fonte:
ISI
Lingua:
ENG
Soggetto:
GAS AUTOMATA; MODEL; EQUATION;
Keywords:
computational fluid dynamics; finite difference method; multi-phase flow; lattice Boltzmann method; pseudo-potential; van der Waals-Cahn-Hilliard fee energy;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Engineering, Computing & Technology
Citazioni:
19
Recensione:
Indirizzi per estratti:
Indirizzo: Seta, T Shizuoka Sangyo Univ, 1572-1 Ohara, Shizuoka 4380043, Japan Shizuoka Sangyo Univ 1572-1 Ohara Shizuoka Japan 4380043 3, Japan
Citazione:
T. Seta et al., "Lattice Boltzmann scheme for simulating two-phase flows", JSME I J B, 43(2), 2000, pp. 305-313

Abstract

A finite difference lattice Boltzmann method (FDLBM) for two-phase flows pertinent to isothermal non-ideal fluids is proposed. This FDLBM introduces pseudopotential and recovers a full set of hydrodynamic equations for non-ideal fluid through the Chapman-Enskog expansion procedure. Numerical measurement of surface tension agrees well with theoretical predictions. Simulations of two-phase phenomena, including phase-transition and droplets collision are carried out, showing applicability of the model for two-phase flows. Finite difference Lattice Boltzmann method ensures numerical stability of the scheme. This LB model retains advantages of conventional LB methods such as a linear advection in the kinetic equation and parallel nature in computing.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 18/01/20 alle ore 01:44:04