Catalogo Articoli (Spogli Riviste)
OPAC HELP
Titolo: Smart greedy procedure for solving a multidimensional nonlinear knapsack class of reliability optimization problems
Autore: Ohtagaki, H; Iwasaki, A; Nakagawa, Y; Narihisa, H;
 Indirizzi:
 Okayama Univ, Fac Engn, Dept Elect Engn, Okayama 700, Japan Okayama Univ Okayama Japan 700 Engn, Dept Elect Engn, Okayama 700, Japan Kansai Univ, Fac Informat, Dept Informat Sci, Takatsuki, Osaka 569, Japan Kansai Univ Takatsuki Osaka Japan 569 at Sci, Takatsuki, Osaka 569, Japan
 Titolo Testata:
 MATHEMATICAL AND COMPUTER MODELLING
fascicolo: 1012,
volume: 31,
anno: 2000,
pagine: 283  288
 SICI:
 08957177(200005/06)31:1012<283:SGPFSA>2.0.ZU;29
 Fonte:
 ISI
 Lingua:
 ENG
 Keywords:
 multidimensional nonlinear knapsack problems; reliability; smart greedy; surrogate multiplier; algorithm cutoff polyhedron;
 Tipo documento:
 Article
 Natura:
 Periodico
 Settore Disciplinare:
 Engineering, Computing & Technology
 Citazioni:
 12
 Recensione:
 Indirizzi per estratti:
 Indirizzo: Ohtagaki, H Okayama Univ, Fac Engn, Dept Elect Engn, Okayama 700, Japan Okayama Univ Okayama Japan 700 lect Engn, Okayama 700, Japan



 Citazione:
 H. Ohtagaki et al., "Smart greedy procedure for solving a multidimensional nonlinear knapsack class of reliability optimization problems", MATH COMP M, 31(1012), 2000, pp. 283288
Abstract
A heuristic procedure called Smart Greedy is proposed for solving a nonlinear knag sack class of reliability optimization problems with multiple constraints (multidimensional nonlinear knapsack problems), At first, by using a surrogate multiplier, the multidimensional nonlinear knap sack problem istranslated into an onedimensional nonlinear knapsack problem, which is called the surrogate problem. Second, modular approach (MA) solves the surrogate problem with the surrogate multiplier given as a centroid of the current polyhedron. Algorithm cutoff polyhedron (COP) provides a cutting plane of the polyhedron, and reduces the polyhedron recursively until the polyhedron becomes empty. Finally, a procedure called Smart Greedy generates an approximate solution of the surrogate problem with the surrogate multiplier finally obtained. The solution obtained is called Smart Greedy solution, which is feasible to the original problem. The computational experiments show fiat the present algorithm provides high quality solutions. (C) 2000 Elsevier Science Ltd. All rights reserved.
ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 09/04/20 alle ore 18:56:57