Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
On "thermodynamics" of rational maps I. Negative spectrum
Autore:
Makarov, N; Smirnov, S;
Indirizzi:
CALTECH, Dept Math, Pasadena, CA 91125 USA CALTECH Pasadena CA USA 91125CALTECH, Dept Math, Pasadena, CA 91125 USA Yale Univ, Dept Math, New Haven, CT 06520 USA Yale Univ New Haven CT USA 06520 Univ, Dept Math, New Haven, CT 06520 USA Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden Royal Inst Technol Stockholm Sweden S-10044 h, S-10044 Stockholm, Sweden
Titolo Testata:
COMMUNICATIONS IN MATHEMATICAL PHYSICS
fascicolo: 3, volume: 211, anno: 2000,
pagine: 705 - 743
SICI:
0010-3616(200005)211:3<705:O"ORMI>2.0.ZU;2-9
Fonte:
ISI
Lingua:
ENG
Soggetto:
EQUILIBRIUM STATES; PHASE-TRANSITION; DIMENSION;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Physical, Chemical & Earth Sciences
Citazioni:
40
Recensione:
Indirizzi per estratti:
Indirizzo: Makarov, N CALTECH, Dept Math, Pasadena, CA 91125 USA CALTECH Pasadena CAUSA 91125 ept Math, Pasadena, CA 91125 USA
Citazione:
N. Makarov e S. Smirnov, "On "thermodynamics" of rational maps I. Negative spectrum", COMM MATH P, 211(3), 2000, pp. 705-743

Abstract

We study the pressure spectrum P (t) of the maximal measure for arbitrary rational maps. We also consider its modified version (P) over tilde(t) which is defined by means of the variational principle with respect to non-atomic invariant measures. It is shown that for negative values of t, the modified spectrum has all major features of the hyperbolic case (analyticity, the existence of a spectral gap for the corresponding transfer operator, rigidity properties, etc). The spectrum P(t) can be computed in terms of P(t), Their Legendre transforms are the Hausdorff and the box-counting dimension spectra of the maximal measure respectively. This work is closely related to a paper [32] by D. Ruelle.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 01/12/20 alle ore 16:40:04