Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Optimal linear combination of neural networks for improving classificationperformance
Autore:
Ueda, N;
Indirizzi:
NTT, Commun Sci Labs, Kyoto 6190237, Japan NTT Kyoto Japan 6190237NTT, Commun Sci Labs, Kyoto 6190237, Japan
Titolo Testata:
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
fascicolo: 2, volume: 22, anno: 2000,
pagine: 207 - 215
SICI:
0162-8828(200002)22:2<207:OLCONN>2.0.ZU;2-A
Fonte:
ISI
Lingua:
ENG
Soggetto:
RECOGNITION;
Keywords:
pattern classification; ensemble learning; linear combination; minimum classification error discriminant; neural network;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Engineering, Computing & Technology
Citazioni:
25
Recensione:
Indirizzi per estratti:
Indirizzo: Ueda, N NTT, Commun Sci Labs, Seika Cho, Kyoto 6190237, Japan NTT Seika Cho Kyoto Japan 6190237 Seika Cho, Kyoto 6190237, Japan
Citazione:
N. Ueda, "Optimal linear combination of neural networks for improving classificationperformance", IEEE PATT A, 22(2), 2000, pp. 207-215

Abstract

With a focus on classification problems, this paper presents a new method for linearly combining multiple neural network classifiers based on statistical pattern recognition theory. In our approach. several neural networks are first selected based on which works best for each class in terms of minimizing classification errors. Then, they are linearly combined to form an ideal classifier that exploits the strengths of the individual classifiers. In this approach, the minimum classification error (MCE) criterion is utilized to estimate the optimal linear weights. In this formulation, because the classification decision rule is incorporated into the cost function a more suitable better combination of weights for the classification objective could be obtained. Experimental results using artificial and real data sets show that the proposed method can construct a better combined classifier that outperforms the best single classifier in terms of overall classification errors for test data.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 19/01/20 alle ore 14:33:32