Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Interaction and accumulation of glissile defect clusters near dislocations
Autore:
Ghoniem, NM; Singh, BN; Sun, LZ; de la Rubia, TD;
Indirizzi:
Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USAUniv Calif Los Angeles Los Angeles CA USA 90095 Los Angeles, CA 90095 USA Riso Natl Lab, DK-4000 Roskilde, Denmark Riso Natl Lab Roskilde Denmark DK-4000 tl Lab, DK-4000 Roskilde, Denmark Univ Calif Lawrence Livermore Natl Lab, Livermore, CA 94550 USA Univ CalifLawrence Livermore Natl Lab Livermore CA USA 94550 A 94550 USA
Titolo Testata:
JOURNAL OF NUCLEAR MATERIALS
, volume: 276, anno: 2000,
pagine: 166 - 177
SICI:
0022-3115(20000101)276:<166:IAAOGD>2.0.ZU;2-A
Fonte:
ISI
Lingua:
ENG
Soggetto:
DISPLACEMENT CASCADES; MOLECULAR-DYNAMICS; METALS; LOOPS; BCC;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Physical, Chemical & Earth Sciences
Engineering, Computing & Technology
Citazioni:
20
Recensione:
Indirizzi per estratti:
Indirizzo: Ghoniem, NM Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA Univ Calif Los Angeles Los Angeles CA USA 90095 CA 90095 USA
Citazione:
N.M. Ghoniem et al., "Interaction and accumulation of glissile defect clusters near dislocations", J NUCL MAT, 276, 2000, pp. 166-177

Abstract

Accumulation of nano-size prismatic defect clusters near slip-dislocationsresults from their mutual elastic interaction. We present here 3-D isotropic elasticity calculations for the interaction energy between radiation-induced nano-size prismatic loops and grown-in dislocation loops. The current treatment extends the work of Trinkaus et al. in two respects. First, a computational method for full 3-D analysis of interaction energies in bce Fe and fee Cu is developed. Second, the theoretical method of Kroupa is computationally implemented for rigorous calculations of force, torque and inducedsurface energy on defect clusters. It is shown that small clusters are trapped within a zone of similar to 10 nm in bcc Fe, and similar to 20 nm in fee Cu at room temperature, in rough agreement with experimental observations. Clusters can be absorbed in the core of grown-in dislocations because ofunbalanced moments, which provide sufficient energy for rotation of their Burgers vectors in a zone of 2-3 nm in Fe. Near the dislocation core (within a few nanometers), sessile defect clusters in Cu are shown to convert to a glissile configuration. (C) 2000 Elsevier Science B.V. All rights reserved.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 29/03/20 alle ore 18:16:13