Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Generalized Energy-Momentum Method for non-linear adaptive shell dynamics
Autore:
Kuhl, D; Ramm, E;
Indirizzi:
Ruhr Univ Bochum, Inst Struct Mech, D-44780 Bochum, Germany Ruhr Univ Bochum Bochum Germany D-44780 ct Mech, D-44780 Bochum, Germany Univ Stuttgart, Inst Struct Mech, D-70550 Stuttgart, Germany Univ Stuttgart Stuttgart Germany D-70550 ech, D-70550 Stuttgart, Germany
Titolo Testata:
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
fascicolo: 3-4, volume: 178, anno: 1999,
pagine: 343 - 366
SICI:
0045-7825(19990803)178:3-4<343:GEMFNA>2.0.ZU;2-9
Fonte:
ISI
Lingua:
ENG
Soggetto:
FINITE-ELEMENT ANALYSIS; TIME-STEPPING PROCEDURE; NONLINEAR DYNAMICS; CONSERVING ALGORITHMS; INCOMPATIBLE MODES; ERROR ESTIMATOR; LARGE STRAINS; FORMULATION; IMPLEMENTATION; ROTATIONS;
Keywords:
non-linear shell dynamics; energy conserving/decaying time integration scheme; a posteriori error estimation; adaptive time step control;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Engineering, Computing & Technology
Citazioni:
51
Recensione:
Indirizzi per estratti:
Indirizzo: Ramm, E Univ Stuttgart, Inst Baustat, Pfaffenwaldring 7, D-70569 Stuttgart, Germany Univ Stuttgart Pfaffenwaldring 7 Stuttgart Germany D-70569 ermany
Citazione:
D. Kuhl e E. Ramm, "Generalized Energy-Momentum Method for non-linear adaptive shell dynamics", COMPUT METH, 178(3-4), 1999, pp. 343-366

Abstract

In the present study, a generalization of the Energy-Momentum Method, denoted by Generalized Energy-Momentum Method, applied to the non-linear dynamics of shells will be developed within the framework of the Generalized-alpha Method. This algorithmic environment contains the unconditionally stable Energy-Momentum Method and its numerically damped Version as well as the classical Newmark and alpha-methods as special cases. In order to control thesize of the time steps of the integration scheme with respect to accuracy and efficiency, an adaptive time stepping procedure based on local a posteriori error estimation will be improved for non-linear dynamical systems andapplied to the proposed class of algorithms. The spatial discretization isrealized by an eight noded finite shell element of Reissner/Mindlin type including an extensible shell director field permitting the application of three-dimensional material laws. The original formulation of this finite element will be developed for non-linear dynamic analysis and adapted for the employment within the introduced energy conserving/decaying time integration scheme. (C) 1999 Elsevier Science S.A. All rights reserved.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 04/07/20 alle ore 20:39:18