Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Unlocking color and flavor in superconducting strange quark matter
Autore:
Alford, M; Berges, J; Rajagopal, K;
Indirizzi:
MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA MIT Cambridge MA USA 02139MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
Titolo Testata:
NUCLEAR PHYSICS B
fascicolo: 1-2, volume: 558, anno: 1999,
pagine: 219 - 242
SICI:
0550-3213(19991004)558:1-2<219:UCAFIS>2.0.ZU;2-4
Fonte:
ISI
Lingua:
ENG
Soggetto:
DENSITY; QCD;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Physical, Chemical & Earth Sciences
Citazioni:
23
Recensione:
Indirizzi per estratti:
Indirizzo: Alford, M MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA MIT Cambridge MAUSA 02139 heoret Phys, Cambridge, MA 02139 USA
Citazione:
M. Alford et al., "Unlocking color and flavor in superconducting strange quark matter", NUCL PHYS B, 558(1-2), 1999, pp. 219-242

Abstract

We explore the phase diagram of strongly interacting matter with massless u and d quarks as a function of the strange quark mass m(s) and the chemical potential mu for baryon number. Neglecting electromagnetism, we describe the different baryonic and quark matter phases at zero temperature. For quark matter, we support our model-independent arguments with a quantitative analysis of a model which uses a four-fermion interaction abstracted from single-gluon exchange. For any finite m(s), at sufficiently large mu we find quark matter in a color-flavor-locked state which leaves a global vector-like SU(2)(color+L+R) symmetry unbroken. As a consequence, chiral symmetry isalways broken in sufficiently dense quark matter. As the density is reduced, for sufficiently large m(s) we observe a first-order transition from thecolor-flavor-locked phase to color superconducting phase analogous to thatin two-flavor QCD. At this unlocking transition chiral symmetry is restored. For realistic values of m(s) our analysis indicates that chiral symmetrybreaking may be present for all densities down to those characteristic of baryonic matter. This supports the idea that quark matter and baryonic matter may be continuously connected in nature. We map the gaps at the quark Fermi surfaces in the high density color-flavor-locked phase onto gaps at thebaryon Fermi surfaces at low densities. (C) 1999 Published by Elsevier Science B.V. All rights reserved.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 04/07/20 alle ore 12:26:02