Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Mechanisms of recovery of dexterity following unilateral lesion of the sensorimotor cortex in adult monkeys
Autore:
Liu, Y; Rouiller, EM;
Indirizzi:
Univ Fribourg, Fac Sci, Inst Physiol, CH-1700 Fribourg, Switzerland Univ Fribourg Fribourg Switzerland CH-1700 CH-1700 Fribourg, Switzerland Univ Fribourg, Fac Sci, Neurosci Program, CH-1700 Fribourg, Switzerland Univ Fribourg Fribourg Switzerland CH-1700 CH-1700 Fribourg, Switzerland
Titolo Testata:
EXPERIMENTAL BRAIN RESEARCH
fascicolo: 1-2, volume: 128, anno: 1999,
pagine: 149 - 159
SICI:
0014-4819(199909)128:1-2<149:MORODF>2.0.ZU;2-T
Fonte:
ISI
Lingua:
ENG
Soggetto:
SUPPLEMENTARY MOTOR AREA; CORTICOSPINAL PROJECTIONS; FRONTAL-LOBE; TOPOGRAPHIC ORGANIZATION; REVERSIBLE INACTIVATION; MAGNETIC STIMULATION; BRAIN-STIMULATION; MACAQUE MONKEYS; SPINAL-CORD; STROKE;
Keywords:
primate; precision grip; reversible inactivation; premotor cortex; intracortical microstimulation; chemical lesion;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Life Sciences
Citazioni:
46
Recensione:
Indirizzi per estratti:
Indirizzo: Rouiller, EM Univ Fribourg, Fac Sci, Inst Physiol, Rue Musee 5, CH-1700 Fribourg, Switzerland Univ Fribourg Rue Musee 5 Fribourg Switzerland CH-1700rland
Citazione:
Y. Liu e E.M. Rouiller, "Mechanisms of recovery of dexterity following unilateral lesion of the sensorimotor cortex in adult monkeys", EXP BRAIN R, 128(1-2), 1999, pp. 149-159

Abstract

The mechanisms of recovery of manual dexterity after unilateral lesion of the sensorimotor cortex in adult primates remain a matter of debate. It hasbeen proposed that the cortical zone adjacent to the lesion may take over part of the function of the damaged cortex. To investigate further this possibility, two adult (4-5 years old) macaque monkeys were trained to performa natural precision-grip task to assess hand dexterity. Intracortical microstimulations (ICMS) were used to map the hand area in M1 on both hemispheres. Ibotenic acid was then injected intracortically to damage the representation in M1 of the preferred hand. Subsequent histological analysis indicated that the hand representation in M1 was indeed lesioned, but, due to a spead of ibotenic acid, the lesion encroached a significant extent of the hand representation in the primary somatosensory cortex. A few minutes after infusion of ibotenic acid, there was a complete loss of dexterity of the preferred hand, which lasted for 1-2 months. Later, a progressive functional recovery of the affected hand took place over a 3- to 4-month period, reaching a stable level corresponding to 30% of the pre-lesion behavioral score. ICMS remapping, conducted nine months after the lesion, revealed that stimulation of the intact or lesioned M1 did not induce any visible movement of the recovered hand. The M1 hand representation on the intact hemisphere wassimilar to that observed before the lesion. Transient inactivation of the M1 hand/arm areas or of the dorsal and ventral premotor cortical areas (PM)on both hemispheres was undertaken by using microinjections of the GABA-agonist muscimol. Inactivations of M1 had no effect. Inhibition of PM in the damaged hemisphere suppressed the recovered manual dexterity of the affected hand. These results suggest that PM plays a significant role in the incomplete functional recovery of hand dexterity following unilateral damage of the sensorimotor cortex in adult monkeys.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 04/12/20 alle ore 16:16:32