Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Population genetics, molecular markers and the study of dispersal in plants
Autore:
Ouborg, NJ; Piquot, Y; Van Groenendael, JM;
Indirizzi:
Univ Nijmegen, Dept Ecol, NL-6525 ED Nijmegen, Netherlands Univ Nijmegen Nijmegen Netherlands NL-6525 ED 5 ED Nijmegen, Netherlands Univ Lille 1, Lab Genet & Evolut Populat Vegetales, CNRS, URA 1185, F-59655 Villeneuve Dascq, France Univ Lille 1 Villeneuve Dascq France F-59655 55 Villeneuve Dascq, France
Titolo Testata:
JOURNAL OF ECOLOGY
fascicolo: 4, volume: 87, anno: 1999,
pagine: 551 - 568
SICI:
0022-0477(199908)87:4<551:PGMMAT>2.0.ZU;2-U
Fonte:
ISI
Lingua:
ENG
Soggetto:
VULGARIS SSP MARITIMA; CHLOROPLAST DNA POLYMORPHISM; SEA BEET POPULATIONS; SEED DISPERSAL; POTAMOGETON-PECTINATUS; GEOGRAPHIC STRUCTURE; MICROSATELLITE LOCI; NATURAL-POPULATIONS; NUCLEAR GENES; F-STATISTICS;
Keywords:
coalescence; gene flow; isolation by distance; paternity analysis; pollen-to-seed-migration ratio;
Tipo documento:
Review
Natura:
Periodico
Settore Disciplinare:
Agriculture,Biology & Environmental Sciences
Citazioni:
122
Recensione:
Indirizzi per estratti:
Indirizzo: Ouborg, NJ Univ Nijmegen, Dept Ecol, Toernooiveld 1, NL-6525 ED Nijmegen, Netherlands Univ Nijmegen Toernooiveld 1 Nijmegen Netherlands NL-6525 ED s
Citazione:
N.J. Ouborg et al., "Population genetics, molecular markers and the study of dispersal in plants", J ECOLOGY, 87(4), 1999, pp. 551-568

Abstract

1 Long-distance dispersal events are biologically very important for plants because they affect colonization probabilities, the probabilities of population persistence in a fragmented habitat, and metapopulation structure. They are, however, very difficult to investigate because of their low frequency. We reviewed the use of molecular markers in the population genetics approach to studying dispersal. With these methods the consequences of long-distance dispersal are studied, rather than the frequency of the dispersal events themselves.2 Molecular markers vary, displaying different amounts of variation and different modes of inheritance: they may be either dominant or codominant, and may or may not be subjected to genetic recombination. Use of markers has inspired the development of maximum likelihood techniques that take the evolutionary history of alleles into account while estimating gene flow.3 Inferring seed dispersal rates from indirect measurements of gene flow involves three steps: (i) quantifying genetic differentiation among populations and using this to estimate the rate of gene flow; (ii) producing a genetic dispersal curve by regressing geographical distance among populations against the amount of gene flow; and (iii) separating seed-mediated from pollen-mediated gene flow, by comparing differentiation in nuclear vs. cytoplasmic molecular markers. In this way, potentially very low levels of gene flow can be detected.4 The indirect approach is based on a number of assumptions. The validity of each assumption should be assessed by independent methods or the estimates of gene flow and dispersal should be mainly used in a comparative context. In metapopulations, with frequent extinction and colonization, the relationship between genetic differentiation and gene flow is not straightforward, and other methods should be used.5 Highly variable molecular markers, especially microsatellites, have facilitated a direct genetic approach to measuring gene flow, based on parentalanalyses.6 The population genetic approach provides different information about dispersal than ecological methods. Thus population genetic and ecological methods may supplement each other, and together lead to a better insight into the dispersal process than either of the methods on its own.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 27/09/20 alle ore 00:39:55