Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
Mixed-mode capillary electrochromatographic separation of anionic analytes
Autore:
Hilder, EF; Macka, M; Haddad, PR;
Indirizzi:
Univ Tasmania, Sch Chem, Hobart, Tas 7001, Australia Univ Tasmania HobartTas Australia 7001 Chem, Hobart, Tas 7001, Australia
Titolo Testata:
ANALYTICAL COMMUNICATIONS
fascicolo: 8, volume: 36, anno: 1999,
pagine: 299 - 303
SICI:
1359-7337(199908)36:8<299:MCESOA>2.0.ZU;2-V
Fonte:
ISI
Lingua:
ENG
Soggetto:
SILICA; ELECTROPHORESIS; PHASE;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Physical, Chemical & Earth Sciences
Citazioni:
17
Recensione:
Indirizzi per estratti:
Indirizzo: Haddad, PR Univ Tasmania, Sch Chem, GPO Box 252-75, Hobart, Tas 7001, Australia Univ Tasmania GPO Box 252-75 Hobart Tas Australia 7001 ustralia
Citazione:
E.F. Hilder et al., "Mixed-mode capillary electrochromatographic separation of anionic analytes", ANAL COMMUN, 36(8), 1999, pp. 299-303

Abstract

In this work, mixed-mode capillary electrochromatography is introduced as a method for selectivity manipulation in the separation of charged analytesand is investigated for a number of analytes. This concept involves utilising a component of the eluent to permit the chromatographic and capillary electrophoresis (CE) separation mechanisms to contribute in varying proportions to the separation. This approach was first investigated using a combination of CE with reversed-phase liquid chromatography (RP-LC) for hydrophobic, charged analytes (aliphatic sulfonates), and using the concentration of organic modifier in the eluent to control the contributions of CE and RP-LC. However, the use of reversed-phase columns was found to be problematic for mobile phases with less then 50% organic modifier due to the hydrophobicity of the stationary phase causing the column bed to overheat and dry, and low electroosmotic flow (EOF) values (mu less than or equal to 17.8 x 10(-9) m(2) V-1 s(-1)) caused additional restrictions. In a second case, ion-exchange stationary phases were used, with the type and concentration of a competing anion in the eluent being used to control the contributions of ion chromatography (IC) and CE to the separation. Nine common inorganic anions were separated using a silica based anion-exchange column and phosphate (pH 7.20) or sulfate (pH 8.2) as eluent with direct UV detection at 214 nm and 17 inorganic and small organic anions were separated using a nitrate eluent(pH 6.80) with indirect UV detection at 214 nm. The separation selectivitywas shown to be a combination of IC and CE.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 03/07/20 alle ore 22:22:39