Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
A VISCOELASTIC CONTINUUM MODEL OF NONPOLAR SOLVATION - II - VIBRATIONAL DEPHASING IN MODERATE TO HIGH-VISCOSITY LIQUIDS AND GLASSES
Autore:
BERG MA; HUBBLE HW;
Indirizzi:
UNIV S CAROLINA,DEPT CHEM & BIOCHEM COLUMBIA SC 29208
Titolo Testata:
Chemical physics
fascicolo: 2-3, volume: 233, anno: 1998,
pagine: 257 - 266
SICI:
0301-0104(1998)233:2-3<257:AVCMON>2.0.ZU;2-K
Fonte:
ISI
Lingua:
ENG
Soggetto:
PHOTON-ECHO EXPERIMENTS; ENERGY RELAXATION; MOLECULAR LIQUIDS; ROOM-TEMPERATURE; DYNAMICS; RAMAN; SPECTROSCOPY; ACETONITRILE; SOLVENT; BENZENE;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Science Citation Index Expanded
Citazioni:
45
Recensione:
Indirizzi per estratti:
Citazione:
M.A. Berg e H.W. Hubble, "A VISCOELASTIC CONTINUUM MODEL OF NONPOLAR SOLVATION - II - VIBRATIONAL DEPHASING IN MODERATE TO HIGH-VISCOSITY LIQUIDS AND GLASSES", Chemical physics, 233(2-3), 1998, pp. 257-266

Abstract

A recent continuum model of non-polar electronic solvation [M. Berg, J. Phys. Chem., A 102 (1998) 17] is extended to treat vibrational dephasing at moderate to high viscosities. Standard theories of vibrational dephasing in low-viscosity liquids predict an unphysical divergence of the linewidth at high viscosity. The current theory corrects this problem by explicitly accounting for the existence of both inertial anddiffusive components in the liquid dynamics. At high viscosity or in a glass, the Raman line is predicted to be inhomogeneous and to have afinite width. In contrast to existing theories, this theory predicts that structural dynamics dominate the Raman linewidth. Collision-like processes only contribute weak, broad wings to the line. This theory also predicts quantitative connections between vibrational dephasing and electronic-state solvation. (C) 1998 Elsevier Science B.V. All rights reserved.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 30/11/20 alle ore 03:27:38