Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
OBJECTIVE ASSESSMENT OF IMAGE QUALITY - III - ROC METRICS, IDEAL OBSERVERS, AND LIKELIHOOD-GENERATING FUNCTIONS
Autore:
BARRETT HH; ABBEY CK; CLARKSON E;
Indirizzi:
UNIV ARIZONA,DEPT RADIOL,CTR OPT SCI TUCSON AZ 85724 UNIV ARIZONA,PROGRAM APPL MATH TUCSON AZ 85724
Titolo Testata:
Journal of the Optical Society of America. A, Optics, image science,and vision.
fascicolo: 6, volume: 15, anno: 1998,
pagine: 1520 - 1535
SICI:
1084-7529(1998)15:6<1520:OAOIQ->2.0.ZU;2-R
Fonte:
ISI
Lingua:
ENG
Soggetto:
NOISE PROPERTIES; EM ALGORITHM;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Science Citation Index Expanded
Citazioni:
23
Recensione:
Indirizzi per estratti:
Citazione:
H.H. Barrett et al., "OBJECTIVE ASSESSMENT OF IMAGE QUALITY - III - ROC METRICS, IDEAL OBSERVERS, AND LIKELIHOOD-GENERATING FUNCTIONS", Journal of the Optical Society of America. A, Optics, image science,and vision., 15(6), 1998, pp. 1520-1535

Abstract

We continue the theme of previous papers [J. Opt. Sec. Am. A 7, 1266 (1990); 12, 834 (1995)] on objective (task-based) assessment of image quality. We concentrate on signal-detection tasks and figures of meritrelated to the ROC (receiver operating characteristic) curve. Many different expressions for the area under an ROC curve (AUC) are derived for an arbitrary discriminant function, with different assumptions on what information about the discriminant function is available. In particular, it is shown that AUC can be expressed by a principal-value integral that involves the characteristic functions of the discriminant. Then the discussion is specialized to the ideal observer, defined as one who uses the likelihood ratio (or some monotonic transformation of it, such as its logarithm) as the discriminant function. The properties of the ideal observer are examined from first principles. Several strong constraints on the moments of the likelihood ratio or the log likelihood are derived, and it is shown that the probability density functions for these test statistics are intimately related. In particular,some surprising results are presented for the case in which the log likelihood is normally distributed under one hypothesis. To unify theseconsiderations, a new quantity called the likelihood-generating function is defined. It is shown that all moments of both the likelihood and the log likelihood under both hypotheses can be derived from this one function. Moreover, the AUC can be expressed, to an excellent approximation, in terms of the likelihood-generating function evaluated at the origin. This expression is the leading term in an asymptotic expansion of the AUG; it is exact whenever the likelihood-generating function behaves linearly near the origin. It is also shown that the likelihood-generating function at the origin sets a lower bound on the AUC in all cases. (C) 1998 Optical Society of America.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 14/07/20 alle ore 19:51:09