Catalogo Articoli (Spogli Riviste)

OPAC HELP

Titolo:
BIODISTRIBUTION STUDIES ON L-3-[FLUORINE-18]FLUORO-ALPHA-METHYL TYROSINE - A POTENTIAL TUMOR-DETECTING AGENT
Autore:
INOUE T; TOMIYOSHI K; HIGUICHI T; AHMED K; SARWAR M; AOYAGI K; AMANO S; ALYAFEI S; ZHANG HN; ENDO K;
Indirizzi:
GUNMA UNIV,SCH MED,DEPT NUCL MED,3-39-22 SHOWA MACHI MAEBASHI GUNMA 371 JAPAN
Titolo Testata:
The Journal of nuclear medicine
fascicolo: 4, volume: 39, anno: 1998,
pagine: 663 - 667
SICI:
0161-5505(1998)39:4<663:BSOLT>2.0.ZU;2-D
Fonte:
ISI
Lingua:
ENG
Soggetto:
ALPHA-METHYL TYROSINE; AMINO-ACID-TRANSPORT; PROTEIN-SYNTHESIS; BRAIN-TUMORS; L-3-)I-123>IODO-ALPHA-METHYL TYROSINE; PET; 2-)F-18>-FLUORO-2-DEOXY-D-GLUCOSE; FLUORINE-18-FLUORODEOXYGLUCOSE; FEASIBILITY; METHIONINE;
Keywords:
FLUORINE-18-METHYL TYROSINE; BIODISTRIBUTION STUDIES; PET;
Tipo documento:
Article
Natura:
Periodico
Settore Disciplinare:
Science Citation Index Expanded
Citazioni:
26
Recensione:
Indirizzi per estratti:
Citazione:
T. Inoue et al., "BIODISTRIBUTION STUDIES ON L-3-[FLUORINE-18]FLUORO-ALPHA-METHYL TYROSINE - A POTENTIAL TUMOR-DETECTING AGENT", The Journal of nuclear medicine, 39(4), 1998, pp. 663-667

Abstract

Iodine-123-alpha-methyl tyrosine has proven to be a promising SPECT agent for imaging amino acid uptake in tumors. We developed L-[3-F-18]-alpha-methyl tyrosine (FMT) for PET studies. The aim of this study wasto investigate its potential use as a tumor-detecting agent by using tumor-bearing mice, Methods: We investigated the biodistribution in normal BALB/C mice and BALB/cA nude mice bearing human rectal cancer cell line (LS180) until 120 min postinjection. FMT tumor uptake at 60 minpostinjection in mice with LS180 rectal cancer, RPMI1788 B-cell lymphoma and MCF7 mammary cell carcinoma was assessed, and the results werecompared with F-18-fluoro-2-deoxy-D-glucose (FDG) tumor uptake. The effect of competitive inhibition of large neutral amino acid transport system using unlabeled L-alanine was also investigated. Results: The amount of FMT in blood fell to 1.05%ID/20 g at 60 min postinjectjon, whereas that in the pancreas was 15.2%ID/20 g, resulting in a high pancreas-to-blood ratio of 14.5. In other organs, initial uptake peaked at 5 min postinjection and then declined with time. In LS180 tumor-bearing mice, peak FMT uptake in tumor was observed at 60 min postinjection. Tumor-to-blood and tumor-to-muscle ratios ranged from 1.60 to 2.94 and from 2.79 to 3.25 over the 120-min observation period. Tumor uptake of FMT was clearly reduced by inhibition of the amino acid transport system. In mice with LS180 and MCF7 tumors, FMT tumor uptake at 60 min postinjection was significantly higher than FDG tumor uptake, whereas in RPMI1788 lymphoma, uptake of FDG was significantly higher than FMT tumor uptake, Tumor-to-blood ratios of FMT in mice with LS180, RPMI1788 and MCF7 tumor at 60 min postinjection were 1.82, 5.88 and 3.56, respectively. Conclusion: FMT, like other fluorinated amino acids, may become a promising tumor-detecting agent for PET, assuming that efficient methods of radiosynthesis are developed.

ASDD Area Sistemi Dipartimentali e Documentali, Università di Bologna, Catalogo delle riviste ed altri periodici
Documento generato il 21/01/21 alle ore 05:45:09